As taking reference from above answers I was doing predictions as
with hierarchical_model:
pm.set_data({
"LocationDesc_encoded": test_data['LocationDesc_encoded'].values,
"obesity_Prevalence": test_data['obesity_Prevalence'].values,
"data_value_py": test_data['data_value_py'].values,
"Avg Temp(°F)": test_data['Avg Temp(°F)'].values,
"AQI": test_data['AQI'].values
})
# Sample from the posterior predictive distribution
posterior_predictive = pm.sample_posterior_predictive(idata, predictions=True,random_seed=rng)
it is giving error as
So I searched for this and found that Data variable are not mutable so to make variable mutable Chatgpt suggest me code as
with hierarchical_model:
LocationDesc_encoded_shared = pm.Data('LocationDesc_encoded', training_data['LocationDesc_encoded'].values, mutable=True)
obesity_Prevalence_shared = pm.Data('obesity_Prevalence', training_data['obesity_Prevalence'].values, mutable=True)
data_value_py_shared = pm.Data('data_value_py', training_data['data_value_py'].values, mutable=True)
Avg_Temp_data = pm.Data('Avg Temp(°F)', training_data['Avg Temp(°F)'].values, mutable=True)
AQI_data = pm.Data('AQI', training_data['AQI'].values, mutable=True)
after this my model architecture is as follows
is this correct way of define model with mutable variables ?
Or someone please provide some reference to read about it ?

