Does this extend to pymc v4 (4.0.0b2)? I can run something like pm.Binomial.dist(n=np.array([0,2,3,4,5]),p=at.expit(-0.1)).eval() with expected results, but when I put it in a model e.g.
with pm.Model() as model:
alpha = pm.Normal("alpha", mu=0, sigma=1)
mu = at.expit(alpha)
pm.Binomial(
"y",
n=np.array([0,2,3,4,5]),
p=mu,
observed=np.array([0,2,2,0,2]) # or even if you omit observed
)
I get
SamplingError: Initial evaluation of model at starting point failed!
Starting values:
{'alpha': array(0.28858972)}
Initial evaluation results:
{'alpha': -0.96, 'y': -inf}
Any ideas?