Hi,
I just wanted to add the solution I’m using now to give weights to my observed data with a Bernoulli likelihood:
import numpy as np
import pymc3 as pm
import theano.tensor as T
N = 1000
P = 0.2
data = np.zeros(N)
data[:int(N * P)] = 1.0
weights = np.zeros(N)
weights[:int(N * P)] = 4.2
with pm.Model() as model:
p_ = pm.Normal('p_',
mu=0.0,
sd=1000.0)
p = pm.Deterministic('p', pm.math.invlogit(p_))
lk = pm.Bernoulli('lk', p=p, observed=data)
pm.Potential('weights',
weights * T.switch(data,
T.log(p),
T.log(1.0 - p)))
trace = pm.sample(10000)
trace['p'].mean() # 0.5652725372506145