If you want to use this with Bambi just call model.build() and then use model.backend.model in the bx.Model.from_pymc call like this:
dist = pm.Normal.dist(mu=100, sigma=30)
draws = pm.draw(dist, draws=1000, random_seed=1000)
df = pd.DataFrame(data=draws, columns=['heights'])
formula = bmb.Formula('heights ~ 1')
model = bmb.Model(formula=formula, family='gaussian', data=df)
model.build()
bx_model = bx.Model.from_pymc(model.backend.model)
idata = bx_model.mcmc.numpyro_nuts(seed=jax.random.key(0))
az.summary(idata)