Marginalized Mixture won't begin sampling/throws assertion error

RANDOM_SEED = 8927
rng = np.random.default_rng(RANDOM_SEED)

N = 1000

W = np.array([0.5, 0.5])

μ_orig = np.array([0.5, 2.5])
σ_orig = np.array([0.45, 0.5])

component = rng.choice(μ_orig.size, size=N, p=W)
data = rng.normal(μ_orig[component], σ_orig[component], size=N)

with pm.Model(coords={"cluster": np.arange(len(W)), "data_id": np.arange(N)}) as model_multi:
    w = pm.Dirichlet("w", np.ones_like(W))

    mu = pm.Normal(
        "mu",
        np.zeros_like(W),
        1.0,
        dims="cluster",
        transform=pm.distributions.transforms.ordered,
        initval=[1, 2],
    )
    tau = pm.Gamma("tau", 1.0, 1.0, dims="cluster")

    data_obs = pm.NormalMixture("data_obs", w, mu, tau=tau, observed=data, dims="data_id")
    trace = pm.sample(5000, n_init=10000, tune=1000, return_inferencedata=True)