Something along these lines maybe?
import pymc3 as pm
import theano.tensor as tt
my_data = [1,2,3,4,5]
with pm.Model() as model:
s1 = pm.Normal('summand1', mu=0, sigma=1)
s2 = pm.Normal('summand2', mu=0, sigma=1)
s3 = pm.Normal('summand3', mu=0, sigma=1)
s4 = pm.Normal('summand4', mu=0, sigma=1)
s5 = pm.Normal('summand5', mu=0, sigma=1)
my_sum = pm.Deterministic('my_sum', s1+s2+s3+s4+s5)
likelihood = pm.Normal('likelihood',
mu=my_sum,
sigma=1,
observed=my_data)
trace = pm.sample()
Or, more compactly:
with pm.Model() as model:
summands = pm.Normal('summands', mu=0, sigma=1, shape=5)
my_sum = pm.Deterministic('my_sum', tt.sum(summands))
likelihood = pm.Normal('likelihood',
mu=my_sum,
sigma=1,
observed=my_data
trace = pm.sample()