You shouldn’t need to take the mean of alpha. This will give the same intercept value to all the units in your sample – the average of the two cluster intercepts. Indexing X by cluster will also not do what you think, it will duplicate rows 0 and 1 over and over.
Note that mu is the conditional expectation, given the X values and the clusters, so you don’t want to take the average of everything.
Here’s a corrected model:
import pymc as pm
coords = {
'num_cols':['BMI','WTGAIN','M_Ht_In'],
'obs':example_data.index,
'clusters':["cluster_3", "cluster_2"]
}
with pm.Model(coords=coords) as Hier:
# add data containers
X = pm.MutableData("X", example_data[['BMI','WTGAIN','M_Ht_In']].values)
y = pm.MutableData("y", example_data['DBWT'].values)
# hyper-prior
αμ = pm.Normal("αμ", mu=0., sigma=3.,)
ασ = pm.HalfNormal("ασ", sigma=3.,)
βμ = pm.Normal("βμ", mu=0., sigma=3.,)
βσ = pm.HalfNormal("βσ", sigma=3.,)
# error
ϵ = pm.Normal("ϵ", mu=0, sigma=3.)
# using the hyperpior 'δ'
α = pm.Normal("α", mu=αμ, sigma=ασ, dims="clusters")
β = pm.Normal("β", mu=βμ, sigma=βσ, dims= ("clusters", "num_cols"))
μ = (X * β[cluster_index, :]).sum(axis=-1) + α[cluster_index]
# response
yhat = pm.Normal("yhat", mu=μ, sigma=ϵ, observed=y)
# sample
trace = pm.sample(
250,
tune=50,
chains=4,
return_inferencedata=True,
idata_kwargs={'log_likelihood':True}
)