I get the same error when I specify the shape: here is what I tried (maybe I’m not doing it correctly):
with pm.Model() as self.model:
W = np.array([1., 1.])
w = pm.Dirichlet('w', W)
intercept = pm.Normal('intercept', mu=-5, sd=5., testval=-5.)
rhos = pm.Uniform('rhos', lower=-1., upper=1., shape=self.num_lags)
comp1 = pm.AR.dist(rho=rhos, sd=pm.math.exp(intercept), shape=len(data))
comp2 = pm.Normal.dist(mu=0., sd=0.01, shape=len(data))
pm.Mixture('obs', w=w, comp_dists=[comp1, comp2], observed=data)
I still get the same axis 1 is out of bounds [-1, 1) error. A custom likelihood with DensityDist is the next thing I’m going to try, I think.