You can try modeling betas as:
betas = pm.Normal("betas", mu=np.zeros(X.shape[1]), sigma=np.ones(X.shape[1]) * 10, shape=X.shape[1])
and replace mu sigma with value computed from posterior sample for the next batch.
You can try modeling betas as:
betas = pm.Normal("betas", mu=np.zeros(X.shape[1]), sigma=np.ones(X.shape[1]) * 10, shape=X.shape[1])
and replace mu sigma with value computed from posterior sample for the next batch.