Thank you @DanhPhan …
Any code that defines a model and calls pm.sample() would do, for instance the one from this gist
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(42)
true_m = 0.5
true_b = -1.3
true_σ = 0.3
x = np.sort(np.random.uniform(0, 5, 50))
y_true = true_b + true_m * x
y = y_true + true_σ * np.random.randn(len(x))
import pymc3 as pm
with pm.Model() as model:
# Define the priors on each parameter.
m = pm.Uniform("m", lower=-5, upper=5)
b = pm.Uniform("b", lower=-5, upper=5)
σ = pm.Uniform("σ", lower=0, upper=10)
# Define the likelihood.
pm.Normal("obs", mu=m * x + b, sd=σ, observed=y)
# This is how you will sample the model.
trace = pm.sample(draws=1000, tune=1000, chains=8, cores=24)
Thank you!