Random Intercepts and Slopes (Correlated) Convergence Issues

Sure, it looks like this (I am not a stan programmer so I cant say that I follow it completely):

Here is the R code:

#brms
wages <- read.table("https://stats.idre.ucla.edu/stat/r/examples/alda/data/wages_pp.txt", header=T, sep=",")

#center
wages$exper_c<-(wages$exper-mean(wages$exper))
wages$hgc.9_c<-(wages$hgc.9-mean(wages$hgc.9))

modbrms<-brm(lnw~ hgc.9_c + exper_c + (exper_c+ hgc.9_c | id) , data=wages
             , family = gaussian(),cores = 8)

The output of summary(modbrms):

  Links: mu = identity; sigma = identity 
Formula: lnw ~ hgc.9_c + exper_c + (exper_c + hgc.9_c | id) 
   Data: wages (Number of observations: 6402) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
         total post-warmup samples = 4000

Group-Level Effects: 
~id (Number of levels: 888) 
                       Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)              0.23      0.01     0.22     0.25        493 1.01
sd(exper_c)                0.04      0.00     0.04     0.05        518 1.01
sd(hgc.9_c)                0.02      0.01     0.00     0.05        103 1.05
cor(Intercept,exper_c)     0.39      0.06     0.27     0.50       1222 1.00
cor(Intercept,hgc.9_c)     0.35      0.32    -0.37     0.90       1163 1.00
cor(exper_c,hgc.9_c)       0.02      0.39    -0.74     0.81        721 1.01

Population-Level Effects: 
          Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept     1.90      0.01     1.88     1.91        966 1.00
hgc.9_c       0.04      0.01     0.02     0.05       1102 1.00
exper_c       0.05      0.00     0.04     0.05       1717 1.00

Family Specific Parameters: 
      Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sigma     0.31      0.00     0.30     0.31       1656 1.00

The stan code:

// generated with brms 2.7.0
functions { 
} 
data { 
  int<lower=1> N;  // total number of observations 
  vector[N] Y;  // response variable 
  int<lower=1> K;  // number of population-level effects 
  matrix[N, K] X;  // population-level design matrix 
  // data for group-level effects of ID 1
  int<lower=1> J_1[N];
  int<lower=1> N_1;
  int<lower=1> M_1;
  vector[N] Z_1_1;
  vector[N] Z_1_2;
  vector[N] Z_1_3;
  int<lower=1> NC_1;
  int prior_only;  // should the likelihood be ignored? 
} 
transformed data { 
  int Kc = K - 1; 
  matrix[N, K - 1] Xc;  // centered version of X 
  vector[K - 1] means_X;  // column means of X before centering 
  for (i in 2:K) { 
    means_X[i - 1] = mean(X[, i]); 
    Xc[, i - 1] = X[, i] - means_X[i - 1]; 
  } 
} 
parameters { 
  vector[Kc] b;  // population-level effects 
  real temp_Intercept;  // temporary intercept 
  real<lower=0> sigma;  // residual SD 
  vector<lower=0>[M_1] sd_1;  // group-level standard deviations
  matrix[M_1, N_1] z_1;  // unscaled group-level effects
  // cholesky factor of correlation matrix
  cholesky_factor_corr[M_1] L_1;
} 
transformed parameters { 
  // group-level effects 
  matrix[N_1, M_1] r_1 = (diag_pre_multiply(sd_1, L_1) * z_1)';
  vector[N_1] r_1_1 = r_1[, 1];
  vector[N_1] r_1_2 = r_1[, 2];
  vector[N_1] r_1_3 = r_1[, 3];
} 
model { 
  vector[N] mu = temp_Intercept + Xc * b;
  for (n in 1:N) { 
    mu[n] += r_1_1[J_1[n]] * Z_1_1[n] + r_1_2[J_1[n]] * Z_1_2[n] + r_1_3[J_1[n]] * Z_1_3[n];
  } 
  // priors including all constants 
  target += student_t_lpdf(temp_Intercept | 3, 2, 10); 
  target += student_t_lpdf(sigma | 3, 0, 10)
    - 1 * student_t_lccdf(0 | 3, 0, 10); 
  target += student_t_lpdf(sd_1 | 3, 0, 10)
    - 3 * student_t_lccdf(0 | 3, 0, 10); 
  target += normal_lpdf(to_vector(z_1) | 0, 1);
  target += lkj_corr_cholesky_lpdf(L_1 | 1); 
  // likelihood including all constants 
  if (!prior_only) { 
    target += normal_lpdf(Y | mu, sigma);
  } 
} 
generated quantities { 
  // actual population-level intercept 
  real b_Intercept = temp_Intercept - dot_product(means_X, b); 
  corr_matrix[M_1] Cor_1 = multiply_lower_tri_self_transpose(L_1);
  vector<lower=-1,upper=1>[NC_1] cor_1;
  // take only relevant parts of correlation matrix
  cor_1[1] = Cor_1[1,2]; 
  cor_1[2] = Cor_1[1,3]; 
  cor_1[3] = Cor_1[2,3]; 
}