Regression using RBF kernel

I don’t understand how to implement this. Can’t we directly use the GP module. It says that gp.Marginal can be used for regression with normally distributed data. Is not it similar to RBF?

I used this code to train the model as shown in the example :

with pm.Model() as model:
    # Specify the covariance function.
    cov_func = pm.gp.cov.ExpQuad(1, ls=0.1)

    # Specify the GP.  The default mean function is `Zero`.
    gp = pm.gp.Marginal(cov_func=cov_func)

    # Place a GP prior over the function f.
    sigma = pm.HalfCauchy("sigma", beta=3)
    y_ = gp.marginal_likelihood("y", X=X, y=y, noise=sigma)

Then used gp.predict(X_new) to predict. Can you please provide me some more direction?

Thanks.