Sampler initialization error with a model containing an LKJCholeskyCov distribution

My apologies, I should’ve read your question more carefully before answering. As you mentioned the problem is with the initial values you assigned. I can run the model with no issues using the default arguments of the sampler:

with pm.Model(coords=coords,) as model:
    chol, corr, stds = pm.LKJCholeskyCov(
        "chol", n=2, eta=2.0, sd_dist=pm.Exponential.dist(1, shape=2)
    )
    cov = pm.Deterministic("cov", chol.dot(chol.T), dims=("axis", "axis_bis"))

    mu = pm.Normal("mu", 0.0, sigma=1.5, dims="axis")
    obs = pm.MvNormal("obs", mu, chol=chol, observed=x, dims=("obs_id", "axis"))

with model:
    idata = pm.sample(1000)

az.summary(idata)
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [chol, mu]
 |████████████| 100.00% [8000/8000 00:26<00:00 Sampling 4 chains, 0 divergences]Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 46 seconds.

'''
                  mean     sd  hdi_3%  ...  ess_bulk  ess_tail  r_hat
mu[y]            0.995  0.007   0.983  ...    3905.0    3155.0    1.0
mu[z]           -1.977  0.015  -2.007  ...    3709.0    3044.0    1.0
chol[0]          0.708  0.005   0.699  ...    4736.0    3434.0    1.0
chol[1]         -0.606  0.014  -0.632  ...    4359.0    3084.0    1.0
chol[2]          1.362  0.010   1.345  ...    5933.0    3117.0    1.0
chol_corr[0, 0]  1.000  0.000   1.000  ...    4000.0    4000.0    NaN
chol_corr[0, 1] -0.406  0.008  -0.422  ...    4562.0    3382.0    1.0
chol_corr[1, 0] -0.406  0.008  -0.422  ...    4562.0    3382.0    1.0
chol_corr[1, 1]  1.000  0.000   1.000  ...    3124.0    3434.0    1.0
chol_stds[0]     0.708  0.005   0.699  ...    4736.0    3434.0    1.0
chol_stds[1]     1.491  0.011   1.472  ...    5046.0    3070.0    1.0
cov[y, y]        0.501  0.007   0.488  ...    4736.0    3434.0    1.0
cov[y, z]       -0.429  0.012  -0.449  ...    3899.0    3118.0    1.0
cov[z, y]       -0.429  0.012  -0.449  ...    3899.0    3118.0    1.0
cov[z, z]        2.223  0.031   2.167  ...    5046.0    3070.0    1.0

Results seem sensible, maybe you don’t really need to assign initial values. Is there a specific reason for using them?