Type Error on Regression Problem

Thank you @junpenglao.

I changed it to this based on your recommendation:

with pm.Model() as sales_model:

#define the priors
alpha = pm.Normal('intercept', mu=train['Weekly_Sales'].mean(), sd = train['Weekly_Sales'].std())
beta_1 = pm.Normal('dept', mu = 0, sd = 10, shape = X_train['Dept'].shape)
beta_2 = pm.Normal('IsHoliday_T',  mu = 0, sd = 10, shape = X_train['IsHoliday_True'].shape)
#beta_3 = pm.Normal('Week', mu=0, sd = 10)
#beta_4 = pm.Normal('Fuel_Prices', mu=0, sd = 10)
#beta_5 = pm.Normal('Temperature', mu=0, sd = 10)
#beta_6 = pm.Normal('Markdown1', mu=0, sd = 10)
#beta_7 = pm.Normal('Markdown2', mu=0, sd = 10)
#beta_8 = pm.Normal('Markdown4', mu=0, sd = 10)
#beta_9 = pm.Normal('Markdown5', mu=0, sd = 10)
#beta_10 = pm.Normal('CPI', mu=0, sd = 10)
#beta_11 = pm.Normal('Unemployment', mu=0, sd = 10)

s = pm.Uniform('sd', lower = 1, upper = 20)

#define the likelihood
mu = alpha + beta_1*X_train['Dept'].values + beta_2*X_train['IsHoliday_True'].values
#+ beta_3*X_train['Week'] + beta_4*X_train['Fuel_Price_s'] + beta_5*X_train['Temperature_s'] + beta_6*X_train['MarkDown1_s'] + beta_7*X_train['MarkDown2_s'] + beta_8*X_train['MarkDown4_s'] +beta_9*X_train['MarkDown5_s'] + beta_10*X_train['CPI_s'] + beta_11*X_train['Unemployment_s']

y = pm.Normal('sales', mu = mu, sd = s, observed = Y_train, shape = Y_train.shape)

trace = pm.sample(draws=10000 ,progressbar=True)

Now the following error shows up.

RuntimeError: Chain 0 failed.