Using a random variable as observed

It’s a copula model that does something a little like:

  1. Create covariance:
\begin{align} L &\sim \text{LKJCholesky}(2), \; R \sim \text{LKJCorr}(2) \\ \sigma &\sim \text{InverseGamma}(\alpha, \beta) \\ \Sigma &\sim LL^{T} = diag(\sigma) * R * diag(\sigma) \end{align}
  1. Transform actually observed marginals via their CDFs:
\begin{align} \mathbf{m1u}_{y} &= \mathfrak{m1}_{y}\Phi(\mathbf{m1}_{y}) \\ \mathbf{m2u}_{y} &= \mathfrak{m2}_{y}\Phi(\mathbf{m2}_{y}) \end{align}
  1. Transform the now-uniform-transformed marginals via a Normal InvCDF:
\begin{align} (\mathbf{m1n}, \mathbf{m2n})_{y} &= \text{MvNormal}(\mu=0, \sigma=1)\Phi^{-1}([\mathbf{m1u}_{y}, \mathbf{m2u}_{y}]) \end{align}
  1. Evaluate likelihood at the copula:
\begin{align} copula &\sim \text{MvNormal}(\mu=0, \Sigma, observed=(\mathbf{m1n}, \mathbf{m2n})_{y} \end{align}