Are all values of
c_mustrictly positive at the starting point?
Yep! I opened up the debugger after loading the data:
(Pdb++) np.all(data['c'] >= 0)
True
What does the output of
model.debug()look like?
point={'c0': array(500), 'alpha_log__': array(2.30258509), 'beta_log__': array(2.30258509), 'gamma_log__': array(2.30258509), 'width_0': array(100), 'width_1': array(100), 'lag_0': array(362), 'lag_1': array(730), 'lag_2': array(1095)}
The variable c_likelihood has the following parameters:
0: Alloc [id A] <Vector(float64, shape=(?,))> 'c_mu'
├─ Sub [id B] <Vector(float64, shape=(1,))>
│ ├─ Add [id C] <Vector(float64, shape=(1,))>
│ │ ├─ ExpandDims{axis=0} [id D] <Vector(int64, shape=(1,))>
│ │ │ └─ c0 [id E] <Scalar(int64, shape=())>
│ │ ├─ Mul [id F] <Vector(float64, shape=(1,))>
│ │ │ ├─ [nan] [id G] <Vector(float64, shape=(1,))>
│ │ │ └─ Exp [id H] <Vector(float64, shape=(1,))>
│ │ │ └─ ExpandDims{axis=0} [id I] <Vector(float64, shape=(1,))>
│ │ │ └─ alpha_log__ [id J] <Scalar(float64, shape=())>
│ │ └─ Mul [id K] <Vector(float64, shape=(1,))>
│ │ ├─ [nan] [id G] <Vector(float64, shape=(1,))>
│ │ └─ Exp [id L] <Vector(float64, shape=(1,))>
│ │ └─ ExpandDims{axis=0} [id M] <Vector(float64, shape=(1,))>
│ │ └─ beta_log__ [id N] <Scalar(float64, shape=())>
│ └─ Mul [id O] <Vector(float64, shape=(1,))>
│ ├─ [nan] [id G] <Vector(float64, shape=(1,))>
│ └─ Exp [id P] <Vector(float64, shape=(1,))>
│ └─ ExpandDims{axis=0} [id Q] <Vector(float64, shape=(1,))>
│ └─ gamma_log__ [id R] <Scalar(float64, shape=())>
└─ Shape_i{0} [id S] <Scalar(int64, shape=())>
└─ t_data [id T] <Vector(float64, shape=(?,))>
The parameters evaluate to:
0: [nan nan nan ... nan nan nan]
This does not respect one of the following constraints: mu >= 0
Here’s the model graph:
