In [1]:
import pymc3 as pm import numpy as np import pandas as pd from theano import shared import scipy.stats as stats import matplotlib.pyplot as plt
import arviz as az
anaconda3\envs $\backslash p m 3 e n v \backslash l i b \backslash s i t e-p a c k a g e s \backslash s c i p y \$ init .py:146: UserWa rning: A NumPy version $>=1.16 .5$ and $<1.23 .0$ is required for this version of SciPy (d etected version 1.23 .5
warnings.warn(f"A NumPy version >=\{np_minversion\} and <\{np_maxversion\}"
WARNING (theano.tensor.blas): Using NumPy C-API based implementation for BLAS functi ons.

In [2]: az.style.use('arviz-darkgrid')

In [3]:
\# DATASET_URL = "https://gist.github.com/BirajCoder/5f068dfe759c1ea6bdfce9535acdb72
DATA_FILENAME = "insurance.csv"
\# download_url(DATASET_URL, '.')

In [4]:
dataframe_raw = pd.read_csv(DATA_FILENAME)

I choose "age" and "bmi" as the independent variables, because they are numerical variables.
 I choose "charges" as

rning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer, col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u ser_guide/indexing.html\#returning-a-view-versus-a-copy nsmokerframe['age_c'] = nsmokerframe.age - np.mean(nsmokerframe.age)

In [8]:

```
nsmokerframe['bmi_c'] = nsmokerframe.bmi - np.mean(nsmokerframe.bmi)
```

\Local\Temp\ipykernel_23924\2603070654.py:1: SettingWithCopyWa

rning:

A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer, col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u ser_guide/indexing.html\#returning-a-view-versus-a-copy
$\underbrace{\text { nsmokerframe['bmi_c'] = }} \underbrace{\text { nsmokerframe.bmi - np. mean (nsmokerframe.bmi) }}$
In [9]:

\Local\Temp\ipykernel_23924\3710568513.py:1:
rning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using . loc[row_indexer, col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pan ser_guide/indexing.html\#returning-a-view-versus-a-copy nsmokerframe['charge_thousand'] = nsmokerframe.charges/1000

In [10]:

Out [10]:

In [11]:

```
in_array = nsmokerframe[['age_c','bmi_c']].to_numpy()
out_array = nsmokerframe['charge_thousand'].to_numpy()
```

with pm.Model() as model_naive: α_{1} tmp $=$ pm.Normal(' $\alpha _$tmp', mu=0, $s d=10$) $\beta=p m . N o r m a l(' \beta$ ', mu=0, sd=1, shape=2) $\epsilon=$ pm.HalfCauchy (' ϵ ', 5) $\mu=\alpha _t m p+p m . m a t h \cdot d o t\left(i n _a r r a y, \beta\right)$

```
\(\alpha=p m . D e t e r m i n i s t i c\left(' \alpha ', \alpha \_t m p ~-p m . m a t h \cdot d o t\left(x \_m e a n, \beta\right)\right)\) y_pred = pm.Normal('y_pred', mu= \(\mu\), \(s d=\epsilon\), observed=out_array) trace_naive = pm.sample(1000)
        \mu__
        \alpha = pm.Deterministic('\alpha', \alpha_tmp - pm.math.dot(x_mean, \beta))
        y_pred = pm.Normal('y_pred', mu=\mu, sd=\epsilon, observed=out_array)
        trace_naive = pm.sample(1000)
```

I applied a very simple model arbitrarily to see what the outcome will look like, so that I can improve from there.

Following are the posterior distributions and summaries I got from the model.

In [19]:

```
varnames = ['\alpha', '\beta', '\epsilon']
az.plot_trace(trace_naive, var_names=varnames);
az.summary(trace_naive, var_names=varnames)
```

Got error No model on context stack. trying to find log_likelihood in translation. \anaconda3\envs\pm3env\lib\site-packages\arviz\data\io_pymc3_3x.py:98:
FutureWarning: Using `from_pymc3` without the model will be deprecated in a future r elease. Not using the model will return less accurate and less useful results. Make sure you use the model argument or call from_pymc3 within a model context.
warnings.warn(
Got error No model on context stack. trying to find log_likelihood in translation. Got error No model on context stack. trying to find log_likelihood in translation. C: \Users \Mengj\anaconda3\envs \pm3env\lib\site-packages \arviz\data\io_pymc3_3x.py:98: FutureWarning: Using ‘from_pymc3` without the model will be deprecated in a future r elease. Not using the model will return less accurate and less useful results. Make sure you use the model argument or call from_pymc3 within a model context. warnings.warn(

Out[19]:		mean	sd	hdi_3\%	hdi_97\%	mcse_mean	mcse_sd	ess_bulk	ess_tail	r_hat
	$\boldsymbol{\alpha}$	-2.301	0.828	-3.854	-0.713	0.011	0.008	6137.0	3044.0	1.00
$\boldsymbol{\beta}[\mathbf{0}]$	0.267	0.010	0.247	0.285	0.000	0.000	6005.0	3182.0	1.00	
$\boldsymbol{\beta}[\mathbf{1]}$	0.007	0.024	-0.040	0.051	0.000	0.000	5473.0	3284.0	1.01	
	$\boldsymbol{\epsilon}$	4.672	0.104	4.482	4.876	0.001	0.001	6617.0	3031.0	1.00

In [20]:
az.plot_posterior(trace_naive)
Got error No model on context stack. trying to find log_likelihood in translation. \anaconda3\envs $\backslash p m 3 e n v \backslash l i b \backslash s i t e-p a c k a g e s \backslash a r v i z \backslash d a t a \backslash i o _p y m c 3 _3 x . p y: 98:$ FutureWarning: Using `from_pymc3` without the model will be deprecated in a future r elease. Not using the model will return less accurate and less useful results. Make sure you use the model argument or call from_pymc3 within a model context.
warnings.warn(
Out [20]:

```
array([[<Axes: title={'center': '\alpha_tmp'}>,
            <Axes: title={'center': '\beta\n0'}>,
            <Axes: title={'center': ' }\beta\n1'}>]
            [<Axes: title={'center': '\epsilon'}>, <Axes: title={'center': '\alpha'}>,
            <Axes: >]], dtype=object)
```


ppc = pm.sample_posterior_predictive(trace_naive, samples=200, model=model_naive, r
\anaconda3\envs\pm3env\lib\site-packages\pymc3\sampling.py:1708: UserW arning: samples parameter is smaller than nchains times ndraws, some draws and/or ch ains may not be represented in the returned posterior predictive sample warnings.warn(

In [27]: data_ppc = az.from_pymc3(trace=trace_naive, posterior_predictive=ppc)
ax = az.plot_ppc(data_ppc, figsize=(12, 6), mean=True)
Got error No model on context stack. trying to find log_likelihood in translation. \anaconda3\envs $\backslash p m 3 e n v \backslash l i b \backslash s i t e-p a c k a g e s \backslash a r v i z \backslash d a t a \backslash i o _p y m c 3 _3 x . p y: 98:$ FutureWarning: Using ‘from_pymc3` without the model will be deprecated in a future r elease. Not using the model will return less accurate and less useful results. Make sure you use the model argument or call from_pymc3 within a model context.
warnings.warn(
posterior predictive variable y_pred's shape not compatible with number of chains an d draws. This can mean that some draws or even whole chains are not represented.

Here is the posterior predictive samples I got from my first naive model.

The prediction in this range is significantly off. I think this is resulted from the assumption that the "y(charges)" follows
normal distribution?
My question is how to restrict my "y" to positive numbers. -100 -

- Posterior predictive - Observed -- Posterior predictive mean
To me, seems like the predictive samples match well with the observed data.
y_pred / y_pred

20
Here I got discrepancies between the observed data and the predicted data. M y understanding is that the samples 30from the prediction were dragged towards the outliers.
In [13]:

```
az.plot_forest([trace_naive],
    model_names=['model_naive'],
    var_names=['\alpha', '\beta', '\epsilon'],
    combined=False, colors='cycle', figsize=(8, 3))
```

Got error No model on context stack. trying to find log_likelihood in translation. \anaconda3\envs \pm3env\lib\site-packages \arviz\data\io_pymc3_3x.py:98: FutureWarning: Using ‘from_pymc3` without the model will be deprecated in a future r elease. Not using the model will return less accurate and less useful results. Make sure you use the model argument or call from_pymc3 within a model context. warnings.warn(
Out[13]: array([<Axes: title=\{'center': '94.0\% HDI'\}>], dtype=object)

ini.alan an

In [14]: az.plot_pair(trace_naive, var_names=[' β ']

I also did a quick plot to have a glance at the correlation between "age" and "bmi". Got error No model on context stack. trying to find log_likelihood in translation.
\anaconda3\envs $\backslash p m 3 e n v \backslash l i b \backslash s i t e-p a c k a g e s \backslash a r v i z \backslash d a t a \backslash i o _p y m c 3 _3 x . p y: 98: ~$ FutureWarning: Using ‘from_pymc3` without the model will be deprecated in a future r elease. Not using the model will return less accurate and less useful results. Make sure you use the model argument or call from_pymc3 within a model context. warnings.warn(
Out[14]: <Axes: xlabel=' $\beta \backslash n 0^{\prime}$, ylabel=' $\beta \backslash n 1$ '>

I calculated the covariance and correlation between 2 independent variables. It seems like they are not highly correlated

In [15]: covariance = np.cov(nsmokerframe['age_c'], nsmokerframe['bmi_c']) covariance

Out[15]: array([[198.3424377 , 10.43742616], [10.43742616, 36.51919527]])

In [18]: corr,_ = stats.pearsonr(nsmokerframe['age_c'], nsmokerframe['bmi_c']) corr

I borrowed the plotting code from the example of "LKJ Cholesky Covariance Prior for Multivariate Normal Models" and plotted these 2 variables -- ($\mathrm{x}=$ age_c, y=bmi_c)

```
import seaborn as sns
from matplotlib.patches import Ellipse
```

```
var, U = np.linalg.eig(covariance)
```

var, U = np.linalg.eig(covariance)
angle = 180.0 / np.pi * np.arccos(np.abs(U[0, 0]))
angle = 180.0 / np.pi * np.arccos(np.abs(U[0, 0]))
fig, ax = plt.subplots(figsize=(8, 6))
fig, ax = plt.subplots(figsize=(8, 6))
blue, _, red, *_ = sns.color_palette()
blue, _, red, *_ = sns.color_palette()
e = Ellipse(\mu_actual, 2 * np.sqrt(5.991 * var[0]), 2 * np.sqrt(5.991 * var[1]), ang
e = Ellipse(\mu_actual, 2 * np.sqrt(5.991 * var[0]), 2 * np.sqrt(5.991 * var[1]), ang
e.set_alpha(0.5)
e.set_alpha(0.5)
e.set_facecolor(blue)
e.set_facecolor(blue)
e.set_zorder(10)
e.set_zorder(10)
ax.add_artist(e)
ax.add_artist(e)
ax.scatter(nsmokerframe['age_c'], nsmokerframe['bmi_c'], c="k", alpha=0.05, zorder=

```
ax.scatter(nsmokerframe['age_c'], nsmokerframe['bmi_c'], c="k", alpha=0.05, zorder=
```

rect $=$ plt.Rectangle($(0,0), 1,1, f c=b l u e, ~ a l p h a=0.5)$
ax.legend([rect], ["95\% density region"], loc=2);

95\% density region

\anaconda3\envs\pm3env\lib\site-packages\deprecat\classic.py:215: Futu reWarning: In v4.0, pm.sample will return an `arviz. InferenceData` object instead of a 'MultiTrace` by default. You can pass return_inferencedata=True or return_inferenc edata=False to be safe and silence this warning.
return wrapped_(*args_, **kwargs_)
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag... Multiprocess sampling (4 chains in 4 jobs) NUTS: $\left[\epsilon, \beta, \alpha _t m p\right]$

Messages while running the model_naive
100.00\% [8000/8000 00:18<00:00 Sampling 4
chains, 0 divergences]
Sampling 4 chains for $1 _000$ tune and $1 _000$ draw iterations (4_000 + 4_000 draws tota 1) took 43 seconds.

In [12]:

```
with pm.Model() as m_x1x2:
    \alpha = pm.Normal('\alpha', mu=0, sd=10)
    \beta1 = pm.Normal('\beta1', mu=0, sd=10)
    \beta2 = pm.Normal(' }\beta2\mathrm{ ', mu=0, sd=10)
    \epsilon = pm.HalfCauchy('\epsilon', 5)
    \mu=\alpha + \beta1 * in_array[:, 0] + \beta2 * in_array[:, 1]
    y_pred = pm.Normal('y_pred', mu=\mu, sd=\epsilon, observed=out_array)
    trace_x1x2 = pm.sample(1000)
```

with pm.Model() as m_x1:
$\alpha=p m . N o r m a l(' \alpha ', ~ m u=0, \quad s d=10)$
$\beta 1=p m . N o r m a l(' \beta 1 ', ~ m u=0, \quad s d=10)$
$\epsilon=$ pm.HalfCauchy(' ϵ ', 5)
$\mu=\alpha+\beta 1$ * in_array $[:, 0]$
y_pred = pm.Normal('y_pred', mu= $\mu, \mathrm{sd}=\epsilon$, observed=out_array)
trace_x1 = pm.sample(1000)
with pm.Model() as m_x2:
$\alpha=p m . N o r m a l(' \alpha ', ~ m u=0, ~ s d=10)$
$\beta 2=p m . N o r m a l(' \beta 2 ', ~ m u=0, s d=10)$
$\epsilon=$ pm.HalfCauchy(' ϵ ', 5)
$\mu=\alpha+\beta 2$ * in_array[:, 1]
y_pred = pm.Normal('y_pred', mu= μ, sd= $\boldsymbol{\epsilon}$, observed=out_array)
trace_x2 = pm.sample(1000)
\anaconda3\envs\pm3env\lib\site-packages\deprecat\classic.py:215: Futu rewarning: in v4.0, pm.sample will return an `arviz. InferenceData` object instead of a `MultiTrace` by default. You can pass return_inferencedata=True or return_inferenc edata=False to be safe and silence this warning.
return wrapped_(*args_, **kwargs_)
Auto-assigning NUTS sampler... Initializing NUTS using jitter+adapt_diag... Multiprocess sampling (4 chains in 4 jobs)
NUTS: $[\epsilon, \beta 2, \beta 1, \alpha]$
100.00\% [8000/8000 00:16<00:00 Sampling 4
chains, 0 divergences]
Sampling 4 chains for $1 _000$ tune and $1 _000$ draw iterations (4_000 $+4 _000$ draws tota l) took 41 seconds.
\anaconda3\envs\pm3env\lib\site-packages\deprecat\classic.py:215: Futu reWarning: In v4.0, pm.sample will return an `arviz. InferenceData` object instead of a `MultiTrace` by default. You can pass return_inferencedata=True or return_inferenc edata=False to be safe and silence this warning.
return wrapped_(*args_, **kwargs_)
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: $[\epsilon, \beta 1, \alpha]$
100.00\% [8000/8000 00:16<00:00 Sampling 4
chains, 0 divergences]
Sampling 4 chains for $1 _000$ tune and $1 _000$ draw iterations (4_000 + 4_000 draws tota 1) took 39 seconds.
\anaconda3\envs\pm3env\lib\site-packages\deprecat\classic.py:215: Futu rewarning: in v4.0, pm.sample will return an `arviz. InferenceData` object instead of a `MultiTrace` by default. You can pass return_inferencedata=True or return_inferenc edata=False to be safe and silence this warning.
return wrapped_(*args_, **kwargs_)
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: $[\epsilon, \beta 2, \alpha]$
100.00\% [8000/8000 00:15<00:00 Sampling 4
chains, 0 divergences]
Sampling 4 chains for $1 _000$ tune and $1 _000$ draw iterations (4_000 + 4_000 draws tota 1) took 39 seconds.

In [13]:

```
az.plot_forest([trace_x1x2, trace_x1, trace_x2],
    model_names=['m_x1x2', 'm_x1', 'm_x2'],
    var_names=['\beta1', '\beta2'],
    combined=False, colors='cycle', figsize=(8, 3))
```

```
Got error No model on context stack. trying to find log_likelihood in translation. \anaconda3\envs \(\backslash p m 3 e n v \backslash l i b \backslash s i t e-p a c k a g e s \backslash a r v i z \ d a t a \backslash i o \_p y m c 3 \_3 x . p y: 98: ~\) Futurewarning: Using `from_pymc3` without the model will be deprecated in a future \(r\) elease. Not using the model will return less accurate and less useful results. Make sure you use the model argument or call from_pymc3 within a model context.
warnings.warn(
Got error No model on context stack. trying to find log_likelihood in translation. Got error No model on context stack. trying to find log_likelihood in translation.
```

Out[13]:
When "bmi" is the only variable, it will have a lager influence on "charge"; while the influence of "age" is pretty much the same in both models.

I can describe the result, but I am not sure how to interpret it. What is this difference indicating?

with pm.Model() as model_tnaive:
α_{1} tmp $=$ pm.Normal('a_tmp', mu=0, sd=10)
$\beta=p m . N o r m a l(' \beta$ ', mu=0, $s d=10$, shape=2)
$\epsilon=$ pm.HalfCauchy (' ϵ ', 5)
$v_{-}=p m . E x p o n e n t i a l\left(' v_{-}\right.$', 1/15)
$v=p m . D e t e r m i n i s t i c\left(' v ', ~ v _+1\right)$
$\mu=\alpha _$tmp + pm.math.dot(in_array, β)

y_pred = pm.StudentT('y_pred', mu= μ,
$s d=\epsilon$, nu=v, observed=out_array)
Self Note -- What is the difference between HalfCauchy and HalfNormal?
trace_tnaive = pm.sample(1000)
\anaconda3\envs\pm3env\lib\site-packages\deprecat\classic.py:215: Futu reWarning: In v4.0, pm.sample will return an `arviz. InferenceData` object instead of a `MultiTrace` by default. You can pass return_inferencedata=True or return_inferenc edata=False to be safe and silence this warning.
return wrapped_(*args_, **kwargs_)
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: $\left[v_{-}, \epsilon, \beta, \alpha _t m p\right]$
100.00\% [8000/8000 00:22<00:00 Sampling 4
chains, 27 divergences]

Sampling 4 chains for $1 _000$ tune and $1_{-} 000$ draw iterations (4_000 + 4_000 draws tota 1) took 46 seconds.

There were 2 divergences after tuning. Increase `target_accept` or reparameterize.
There were 9 divergences after tuning. Increase `target_accept` or reparameterize.
There were 9 divergences after tuning. Increase ‘target_accept` or reparameterize. There were 7 divergences after tuning. Increase ‘target_accept` or reparameterize.

I got these warning messages after sampling. Can I ask what they are indicating?

But then when I looked at the posterior summaries, and especially the posterior predictions, very funny results showed up...

In [29]: varnames = [' α ', ' β ', ' ϵ ']
az.plot_trace(trace_tnaive, var_names=varnames);
az.summary(trace_tnaive, var_names=varnames)

Got error No model on context stack. trying to find log_likelihood in translation. \anaconda3\envs $\backslash p m 3 e n v \backslash l i b \backslash s i t e-p a c k a g e s \backslash a r v i z \backslash d a t a \backslash i o _p y m c 3 _3 x . p y: 98: ~$ FutureWarning: Using ‘from_pymc3` without the model will be deprecated in a future \(r\) elease. Not using the model will return less accurate and less useful results. Make sure you use the model argument or call from_pymc3 within a model context. warnings.warn(Got error No model on context stack. trying to find log_likelihood in translation. Got error No model on context stack. trying to find log_likelihood in translation. C: \Users \Mengj \anaconda3\envs \pm3env\lib\site-packages \arviz\data\io_pymc3_3x.py:98: FutureWarning: Using ‘from_pymc3` without the model will be deprecated in a future r elease. Not using the model will return less accurate and less useful results. Make sure you use the model argument or call from_pymc3 within a model context.
warnings.warn(

Though still very close to 0 , the beta related to "bmi" turns to 0 . This does not make much sense to me, because when passed a certain range, the higher the bmi, the less healthy the person might be, which may lead to a higher expense on the health insurance charge.

Out[29]:

In [16]:

```
az.plot_posterior(trace_tnaive)
```

Got error No model on context stack. trying to find log_likelihood in translation. \anaconda3\envs \pm3env\lib\site-packages \arviz\data\io_pymc3_3x.py:98: FutureWarning: Using ‘from_pymc3` without the model will be deprecated in a future r elease. Not using the model will return less accurate and less useful results. Make sure you use the model argument or call from_pymc3 within a model context. warnings.warn(
Out[16]: array([[<Axes: title=\{'center': 'a_tmp'\}>,
<Axes: title=\{'center': ' β \n0'\}>,
<Axes: title=\{'center': ' $\beta \backslash n 1$ '\}>],
[<Axes: title=\{'center': ' ϵ '\}>, <Axes: title=\{'center': 'v'\}>,
<Axes: title=\{'center': ' α '\}>]], dtype=object)

Got error No model on context stack. trying to find log_likelihood in translation.
Out[17]: array([<Axes: title=\{'center': '94.0\% HDI'\}>], dtype=object)

94.0\% HDI

$$
\begin{array}{r|r|r|}
\text { model_tnaive: } \alpha & \equiv & \\
\text { model_tnaive: } \beta[0] \\
\text { model_tnaive: }[1] & & \\
\hline
\end{array}
$$

model_tnaive: ϵ

-3	-2	-1	0

In [30]: ppc_t = pm.sample_posterior_predictive(trace_tnaive, samples=200, model=model_tnaiv
\anaconda3\envs\pm3env\lib\site-packages\pymc3\sampling.py:1708: UserW arning: samples parameter is smaller than nchains times ndraws, some draws and/or ch ains may not be represented in the returned posterior predictive sample warnings.warn(
100.00% [200/200 00:01<00:00]

In [31]: data_ppc_t = az.from_pymc3(trace=trace_tnaive, posterior_predictive=ppc_t) ax = az.plot_ppc(data_ppc_t, figsize=(12, 6), mean=True) plt.xlim(-15, 35)

Got error No model on context stack. trying to find log_likelihood in translation. \anaconda3\envs \pm3env\lib\site-packages \arviz\data\io_pymc3_3x.py:98: FutureWarning: Using ‘from_pymc3` without the model will be deprecated in a future r elease. Not using the model will return less accurate and less useful results. Make sure you use the model argument or call from_pymc3 within a model context.
warnings.warn(
posterior predictive variable y_pred's shape not compatible with number of chains an d draws. This can mean that some draws or even whole chains are not represented.
Out[31]: (-15.0, 35.0)
The funniest thing is here...

In [19]:

```
varnames = ['\alpha', ' }\beta\mathrm{ ', ' '']
az.plot_trace(trace_naive, var_names=varnames);
az.summary(trace_naive, var_names=varnames)
```

Got error No model on context stack. trying to find log_likelihood in translation. \anaconda3\envs \pm3env\lib\site-packages \arviz\data\io_pymc3_3x.py:98: FutureWarning: Using `from_pymc3` without the model will be deprecated in a future r elease. Not using the model will return less accurate and less useful results. Make sure you use the model argument or call from_pymc3 within a model context.
warnings.warn(
Got error No model on context stack. trying to find log_likelihood in translation. Got error No model on context stack. trying to find log_likelihood in translation. C: \Users \Mengj\anaconda3\envs \pm3env\lib\site-packages \arviz\data\io_pymc3_3x.py:98: FutureWarning: Using ‘from_pymc3` without the model will be deprecated in a future r elease. Not using the model will return less accurate and less useful results. Make sure you use the model argument or call from_pymc3 within a model context.
warnings.warn(

Out[19]:		mean	sd	hdi_3\%	hdi_97\%	mcse_mean	mcse_sd	ess_bulk	ess_tail	r_hat
	$\boldsymbol{\alpha}$	-2.301	0.828	-3.854	-0.713	0.011	0.008	6137.0	3044.0	1.00
$\boldsymbol{\beta}[\mathbf{0}]$	0.267	0.010	0.247	0.285	0.000	0.000	6005.0	3182.0	1.00	
$\boldsymbol{\beta}[1]$	0.007	0.024	-0.040	0.051	0.000	0.000	5473.0	3284.0	1.01	
	$\boldsymbol{\epsilon}$	4.672	0.104	4.482	4.876	0.001	0.001	6617.0	3031.0	1.00

In [17]: with pm.Model() as model_tnaivev2:
$\alpha_{_}$tmp $=$pm.StudentT('a_tmp', mu=0, sd=10, nu=30/29)
$\beta=p m . S t u d e n t T(' \beta ', ~ m u=0, s d=10, n u=30 / 29$, shape=2)
$\epsilon=$ pm.HalfCauchy (' ϵ ', 5)
\#v_ = pm.Exponential('v_', 1/15)
$\# v=p m . D e t e r m i n i s t i c\left(' v ', v_{-}+1\right)$
$\mu=\alpha _t m p+p m . m a t h \cdot d o t\left(i n _a r r a y, \beta\right)$
$\alpha=p m . D e t e r m i n i s t i c\left(' \alpha ', ~ \alpha _t m p ~-~ p m . m a t h . d o t\left(x _m e a n, ~ \beta\right)\right) ~$
y_pred = pm.Normal('y_pred', mu= $\mu, \quad \mathrm{sd}=\epsilon$, observed=out_array)
trace_tnaivev2 = pm.sample(1000)
anaconda3\envs $\backslash p m 3 e n v \backslash l i b \backslash s i t e-p a c k a g e s \backslash d e p r e c a t \backslash c]$ reWarning: In v4.0, pm.sample will return an `arviz.InferenceData` a "MultiTrace` by default. You can pass return_inferencedata=True edata=False to be safe and silence this warning.
return wrapped_(*args_, **kwargs_)
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: $\left[\epsilon, \beta, \alpha _t m p\right]$
100.00\% [8000/8000 00:07<00:00 Sampling 4
chains, 0 divergences]
Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws tota 1) took 25 seconds.

In [18]: varnames = [' α ', ' β ', ' ϵ ']
az.plot_trace(trace_tnaivev2, var_names=varnames);
az.summary(trace_tnaivev2, var_names=varnames)
Got error No model on context stack. trying to find log_likelihood in translation. \anaconda3\envs $\backslash p m 3 e n v \backslash l i b \backslash s i t e-p a c k a g e s \backslash a r v i z \backslash d a t a \backslash i o _p y m c 3 _3 x . p y: 98: ~$
FutureWarning: Using ‘from_pymc3` without the model will be deprecated in a future \(r\) elease. Not using the model will return less accurate and less useful results. Make sure you use the model argument or call from_pymc3 within a model context. warnings.warn(Got error No model on context stack. trying to find log_likelihood in translation. Got error No model on context stack. trying to find log_likelihood in translation. C: \Users \Mengj\anaconda3\envs \pm3env\lib\site-packages \arviz\data\io_pymc3_3x.py:98: FutureWarning: Using ‘from_pymc3` without the model will be deprecated in a future r elease. Not using the model will return less accurate and less useful results. Make sure you use the model argument or call from_pymc3 within a model context.
warnings.warn(

Out[18]:

	mean	sd	hdi_3\%	hdi_97\%	mcse_mean	mcse_sd	ess_bulk	ess_tail	r_hat
$\boldsymbol{\alpha}$	-2.303	0.811	-3.863	-0.807	0.010	0.008	6527.0	2894.0	1.0
$\boldsymbol{\beta}[\mathbf{0}]$	0.267	0.010	0.249	0.287	0.000	0.000	6328.0	2917.0	1.0
$\boldsymbol{\beta}[\mathbf{1]}$	0.007	0.024	-0.037	0.052	0.000	0.000	7014.0	2837.0	1.0
$\boldsymbol{\epsilon}$	4.671	0.102	4.480	4.860	0.001	0.001	6251.0	2903.0	1.0

In [19]:

```
az.plot_forest([trace_tnaivev2],
    model_names=['model_tnaivev2'],
    var_names=['\alpha', '\beta', '\epsilon'],
    combined=False, colors='cycle', figsize=(8, 3))
```

Got error No model on context stack. trying to find log_likelihood in translation. anaconda3\envs\pm3env\lib\site-packages \arviz\data\io_pymc3_3x.py:98: FutureWarning: Using `from_pymc3` without the model will be deprecated in a future r elease. Not using the model will return less accurate and less useful results. Make sure you use the model argument or call from_pymc3 within a model context. warnings.warn(
Out[19]: array([<Axes: title=\{'center': '94.0\% HDI'\}>], dtype=object)

94.0\% HDI

model_tnaivev2: α

model_tnaivev2: $\beta[0]$
model_tnaivev2: [1]
model_tnaivev2: ϵ

```
ppc_tv2 = pm.sample_posterior_predictive(trace_tnaivev2, samples=200, model=model_t
```

anaconda3\envs $\backslash p m 3 e n v \backslash l i b \backslash s i t e-p a c k a g e s \backslash p y m c 3 \backslash s a m p l i n g . p y: 1708: ~ U s e r W ~$ arning: samples parameter is smaller than nchains times ndraws, some draws and/or ch ains may not be represented in the returned posterior predictive sample
100.00% [200/200 00:00<00:00]

In [21]:

```
data_ppc_tv2 = az.from_pymc3(trace=trace_tnaivev2, posterior_predictive=ppc_tv2)
ax = az.plot_ppc(data_ppc_tv2, figsize=(12, 6), mean=True)
# plt.xlim(-15, 35)
```

Got error No model on context stack. trying to find log_likelihood in translation. anaconda3\envs $\backslash p m 3 e n v \backslash l i b \backslash s i t e-p a c k a g e s \backslash a r v i z \backslash d a t a \backslash i o _p y m c 3 _3 x . p y: 98: ~$ FutureWarning: Using ‘from_pymc3` without the model will be deprecated in a future r elease. Not using the model will return less accurate and less useful results. Make sure you use the model argument or call from_pymc3 within a model context. warnings.warn(posterior predictive variable y_pred's shape not compatible with number of chains an d draws. This can mean that some draws or even whole chains are not represented.

However, the posterior prediction here (after changing the prior distribution from Normal distribution to Student-T

I tried some methods to see if there is a way to force y_pred to only positive numbers. I thought the exponential function might be helpful, but it failed...

Can I ask for some examples forcing the y_pred to positive numbers so that I can learn from it?

In [14]:

```
out_array_exp = np.exp(out_array)
```

out_array_exp

Out[14]:

```
array([5.61562168e+00, 8.55808891e+01, 3.52967138e+09, ...,
    9.07915203e+00, 5.10302499e+00, 7.44799598e+00])
```

In [15]:

```
with pm.Model() as model_exnaive:
    \alpha_tmp = pm.Normal('\alpha_tmp', mu=0, sd=10)
    \beta= pm.Normal(' }\beta\mathrm{ ', mu=0, sd=1, shape=2)
    \epsilon = pm.HalfCauchy('\epsilon', 5)
    \mu = \alpha_tmp + pm.math.dot(in_array, \beta)
    \alpha = pm.Deterministic('\alpha', \alpha_tmp - pm.math.dot(x_mean, \beta))
    y_pred_temp = pm.Deterministic('y_pred_temp', pm.math.exp( }\mu\mathrm{ ))
    # y_pred = pm.Exponential('y_pred', 1/\mu, observed=out_array)
    y_pred = pm.Normal('y_pred', mu=y_pred_temp, sd=\epsilon, observed=out_array_exp)
    trace_exnaive = pm.sample(1000)
```

anaconda3\envs $\backslash p m 3 e n v \backslash l i b \backslash s i t e-p a c k a g e s \backslash d e p r e c a t \backslash c l a s s i c . p y: 215: ~ F u t u$ reWarning: In v4.0, pm.sample will return an `arviz. InferenceData` object instead of a 'MultiTrace` by default. You can pass return_inferencedata=True or return_inferenc edata=False to be safe and silence this warning.
return wrapped_(*args_, **kwargs_)
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: $\left[\epsilon, \beta, \alpha _t m p\right]$
3.81\% [305/8000 00:00<00:10 Sampling 4
chains, 0 divergences]

```
RemoteTraceback
Traceback (most recent call last)
RemoteTraceback:
"""
Traceback (most recent call last):
    File \anaconda3\envs\pm3env\lib\site-packages\pymc3\parallel_sampli
ng.py", line 137, in run
        self._start_loop()
    File \anaconda3\envs\pm3env\lib\site-packages\pymc3\parallel_sampli
ng.py", line 191, in _start_loop
        point, stats = self._compute_point()
    File \anaconda3\envs\pm3env\lib\site-packages\pymc3\parallel_sampli
ng.py", line 216, in _compute_point
        point, stats = self._step_method.step(self._point)
    File \anaconda3\envs\pm3env\lib\site-packages\pymc3\step_methods\ar
raystep.py", line 276, in step
    apoint, stats = self.astep(array)
    File \anaconda3\envs\pm3env\lib\site-packages\pymc3\step_methods\hm
c\base_hmc.py", line 147, in astep
    self.potential.raise_ok(self._logp_dlogp_func._ordering.vmap)
    File \anaconda3\envs\pm3env\lib\site-packages\pymc3\step_methods\hm
c\quadpotential.py", line 268, in raise_ok
    raise ValueError("\n".join(errmsg))
ValueError: Mass matrix contains zeros on the diagonal.
The derivative of RV ` }\beta\mathrm{ '.ravel()[0] is zero.
The derivative of RV ` }\beta\mathrm{ `.ravel()[1] is zero.
The derivative of RV `a_tmp`.ravel()[0] is zero.
"""
The above exception was the direct cause of the following exception:
```

```
ValueError Traceback (most recent call last)
```

ValueError Traceback (most recent call last)
ValueError: Mass matrix contains zeros on the diagonal.
The derivative of RV ` }\beta`.ravel()[0] is zero.
The derivative of RV ` }\beta`.ravel()[1] is zero
The derivative of RV `\alpha_tmp`.ravel()[0] is zero.
The above exception was the direct cause of the following exception:
RuntimeError Traceback (most recent call last)
Cell In[15], line 16
12 \# y_pred = pm.Exponential('y_pred', 1/ \mu, observed=out_array)
14 y_pred = pm.Normal('y_pred', mu=y_pred_temp, sd=\epsilon, observed=out_array_exp)
---> 16 trace_exnaive = pm.sample(1000)
File ~\anaconda3\envs\pm3env\lib\site-packages\deprecat\classic.py:215, in deprecat.
<locals>.wrapper_function(wrapped_, instance_, args_, kwargs_)
213 else:
214 warnings.warn(message, category=category, stacklevel=_routine_st
acklevel)
--> 215 return wrapped_(*args_, **kwargs_)
File ~\anaconda3\envs\pm3env\lib\site-packages\pymc3\sampling.py:575, in sample(draw $s, ~ s t e p, ~ i n i t, ~ n _i n i t, ~ i n i t v a l s, ~ t r a c e, ~ c h a i n _i d x, ~ c h a i n s, ~ c o r e s, ~ t u n e, ~ p r o g r e s s b a r, ~$ model, random_seed, discard_tuned_samples, compute_convergence_checks, callback, jit ter_max_retries, start, return_inferencedata, idata_kwargs, mp_ctx, pickle_backend,

```
```

**kwargs)
5 7 3 _print_step_hierarchy(step)
574 try:
--> 575 trace = _mp_sample(**sample_args, **parallel_args)
5 7 6 ~ e x c e p t ~ p i c k l e . P i c k l e E r r o r : ~
5 7 7 ~ < l o g . w a r n i n g (" C o u l d ~ n o t ~ p i c k l e ~ m o d e l , ~ s a m p l i n g ~ s i n g l e t h r e a d e d . ") ~
File ~\anaconda3\envs\pm3env\lib\site-packages\pymc3\sampling.py:1496, in mp_sample
(draws, tune, step, chains, cores, chain, random_seed, start, progressbar, trace, mo
del, callback, discard_tuned_samples, mp_ctx, pickle_backend, **kwargs)
1494 try:
1495 with sampler:
-> 1496 for draw in sampler:
1497 trace = traces[draw.chain - chain]
1498 if trace.supports_sampler_stats and draw.stats is not None:
File ~\anaconda3\envs\pm3env\lib\site-packages\pymc3\parallel_sampling.py:479, in Pa
rallelSampler.__iter__(self)
4 7 6 ~ s e l f . , p r o g r e s s . u p d a t e (s e l f . , t o t a l _ d r a w s)
478 while self._active:
--> 479 draw = ProcessAdapter.recv_draw(self._active)
480 proc, is_last, draw, tuning, stats, warns = draw
481 self._total_draws += 1
File ~\anaconda3\envs\pm3env\lib\site-packages\pymc3\parallel_sampling.py:359, in Pr
ocessAdapter.recv_draw(processes, timeout)
357 else:
358 error = RuntimeError("Chain %s failed." % proc.chain)
--> 359 raise error from old_error
360 elif msg[0] == "writing_done":
361 proc._readable = True
RuntimeError: Chain 0 failed.

```

In I also plotted the distribution of the variables, next I want to try ( and I am wondering if the following idea reasonable at all) --


I want to have some assumption on my independent variables based on my observation of the distribution here (assuming that my observation is my knowledge of the data), then sample the independent variables.

The data contains more people in young age group, but I want to try put the uniform distribution here, range around [-22, 25].


Distribution of Charges
```

