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1. Introduction and Overview 

From a legal point of view mortgage default is defined as

“transfer of the legal ownership of the property from the bor-

rower to the lender either through the execution of foreclosure

proceedings or the acceptance of a deed in lieu of foreclosure”; see

Gilberto and Houston Jr. (1989) . However, as noted by Ambrose and

Capone (1998) , it is common in the literature to define default as

being delinquent in mortgage payment for ninety days. 

As noted by Soyer and Xu (2010) , due to major costs result-

ing from default to all involved parties, such as mortgage lenders,

mortgagors, investors of mortgage backed securities (MBS) and the

guarantors of MBS, assessment and management of the default risk

is a major concern for financial institutions, and policy makers. As

a result, there exists a rich literature on modeling mortgage de-

fault risk; see for example, Quercia and Stegman (1992) and Leece

(2004) . An important class of models is based on the ruthless de-

fault assumption which states that a rational borrower would max-

imize his/her wealth by defaulting on the mortgage if the market

value of the mortgage exceeds the house value, and by prepaying if

the market value of the house exceeds the book value of the house.

Such models use an option theoretic approach and assume that the

mortgage value and the prepayment and default options are de-

termined by the stochastic behavior of variables such as property

prices and the interest rates; see for example, Kau, Keenan, III, and

Epperson (1990) . Thus, under the option theoretic approach, other

factors, such as the transaction costs, borrower characteristics, etc.,
∗ Corresponding author. 
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re assumed to have no impact on values of the mortgage and the

roperty underlined. The ruthless default assumption is not univer-

ally accepted in the literature and evidence against the validity

f the assumption has been presented by many authors. Further-

ore, as pointed out by Soyer and Xu (2010) , implementation of

his class of models requires availability of performance level data

n individual loans over time which is typically difficult to obtain. 

The alternate point of view, that does not subscribe to the ruth-

ess default assumption, favors direct modeling of time to default

f the mortgage. This approach involves hazard rate based models

nd also considers more direct determinants of mortgage default.

his class of models includes competing risks and proportional

azards models of Lambrecht, Perraudin, and Satchell (2003) and

uration models of Lambrecht, Perraudin, and Satchell (1997) that

ake into account individual borrower and loan characteristics. The

ompeting risks models have been considered by many such as

eng and Order (20 0 0) ; Deng, Quigley, and Order (1996) , Deng

1997) , and Calhoun and Deng (2002) . These can be considered as

he competing risks versions of proportional hazards and multino-

ial logit models. The competing risks version of the PHM sug-

ested by Deng (1997) involves evaluating hazard rates under the

repayment and default options. The author refers to these as pre-

ayment and default risks. The competing risks approach is found

o be useful in explaining the prepayment and default behaviors

nd improving the prediction of mortgage terminations. Applica-

ion of these models to commercial mortgages can be found in

iochetti, Deng, Gao, and Yao (2002) and in the more recent work

y Deng and Haghani (2018) . 

It is important to note that these class of models, focusing

n assessment of time to default, differ from the classification

ype approaches that are typically used to assess whether a loan

https://doi.org/10.1016/j.ejor.2018.10.047
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Fig. 1. Competing risk representation of a mortgage that can default, prepay or ma- 

ture at time T M . 
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efaults or not. A recent review by Lessmann, Baesens, Seow, and

homas (2015) discuss classification methods and algorithms that

re used for credit scoring. An empirical comparison of classifica-

ion algorithms for prediction of mortgage defaults can be found

n Fitzpatrick and Mues (2016) where authors consider standard

ethods such as logistic regression as well as decision tree-based

pproaches such as random forests. Liu, Hua, and Lim (2015) note

he potential limitations of classification models in dealing with

ensored data and propose hierarchical mixture models as an

xtension of the work of Tong, Mues, and Thomas (2012) . 

Most of the above models use classical methods for estimation

nd as a result they do not provide probabilistic inferences. Some

xceptions to these are the Bayesian work by Popova, Popova,

nd George (2008) who proposed Bayesian methods for forecast-

ng mortgage prepayment rates, Soyer and Xu (2010) who consid-

red Bayesian mixtures of proportional hazards models for describ-

ng time to default and Kiefer (2010) who proposed an Bayesian

pproach for default estimation using expert information. More

ecently, Bayesian time series models have been considered in

ktekin, Soyer, and Xu (2013) and Lee, Rösch, and Scheule (2016) .

ayesian mixture and segmentation models have been considered

n Galloway, Johnson, and Shemyakin (2017) and Bayesian mixture

ure models are discussed by Liu et al. (2015) . Our approach dif-

ers from the previous in that we consider Bayesian competing risk

roportional hazards models and in so doing we use both default

nd prepayment data. Bayesian analysis of competing risks models

as been considered by Sun and Berger (1993) in reliability anal-

sis and semiparametric Bayesian proportional hazards competing

isk models have been introduced by Gelfand and Mallick (1995) in

urvival analysis. Our work differ from these both in terms of the

pplication and the specific approach taken. Furthermore, our fo-

us is on time to default/prepayment since assessment of default

ime is important for financial institutions who offer loan modifi-

ation and loss mitigation programs which are available in US as

ell as in Europe; see Olrich (2006) and Andritzky (2014) . 

In this paper we consider modeling duration of single-home

ortgages. In doing so, we model default and prepayment prob-

bilities simultaneously using competing risks proportional haz-

rds models. We include both individual and aggregate level co-

ariates in our model. We adopt the Bayesian viewpoint in the

nalysis and develop posterior and predictive inferences by using

arkov chain Monte Carlo (MCMC) methods. In addition to pro-

iding a formalism to incorporate prior opinion into the analysis,

he Bayesian approach enables us to describe all our inferences

robabilistically and provides additional insights from the analy-

is. In what follows, we first introduce the competing risks pro-

ortional hazards models in Section 2 . The Bayesian inference is

resented in Section 3 where posterior and predictive analyses are

eveloped. In Section 4 we illustrate implementation of our model

nd Bayesian methods using simulated data. Concluding remarks

ollow in Section 5 . 

. Competing risk proportional hazards model 

To introduce some notation let L denote the mortgage lifetime

nd T M 

denote the maturity date of the mortgage loan. Note that

f a mortgage loan is not defaulted or prepaid then L = T M 

. If we

et T D and T P denote time to default and time to prepayment for a

ortgage loan, respectively, then L = T M 

if ( T D > T M 

) and ( T P > T M 

).

ig. 1 illustrates the relationship between T M 

, T D and T P . If both

 D and T P are larger than T M 

then the mortgage will be paid on

ime. For a given mortgage loan it is of interest to infer events

f “full payment”, default and prepayment. In other words, we are

nterested in computing probability statements such as P ( T D > T M 

,

 > T ), P ( T < T | T < T ) or P ( L > t | L < T ). 
P M D P D M M 
In view of the above, we can write 

 = min (T D , T P , T M 

) , 

here both T D and T P are random variables. We will model T D 
nd T P separately as proportional hazards models (PHMs) as in Cox

1972) . We denote the hazard (failure) rate for default and for pre-

ayment as λD ( t ) and λP ( t ), respectively. We will refer to λD ( t ) as

he default rate and to λP ( t ) as the prepayment rate . We model the

efault rate as 

D (t | X D (t)) = r D (t | ψ D ) exp (θ ′ 
D X D (t)) , (1)

here r D ( t | ψ ) is the baseline default rate, ψ D is vector of param-

ters, X D ( t ) is a vector of time dependent covariates specific to de-

ault mortgages and θD is a vector of regression parameters. Simi-

arly, the prepayment rate is modeled as 

P (t | X P (t)) = r P (t | ψ P ) exp (θ ′ 
P X P (t)) . (2)

ote that for ease of notation, we use the same notation for all

ovariates, i.e. X D ( t ) ≡ X P ( t ) ≡ X ( t ). 

We assume that default and prepayment are “competing risks”,

o that we only observe the first of them to occur. The observa-

ion of one at time t implies that the other is right-censored at t .

e assume T D and T P to be independent, conditional on the base-

ine rate, parameters and set of covariates. Thus, the joint survival

unction of T D and T P is given by 

P (T D > t D , T P > t P | r D () , r S () , θD , θP , X 

∗) 

= P (T D > t D | r D () , θD , X 

∗) P (T P > t P | r S () , θP , X 

∗) 

= exp 

(
−

∫ t D 

0 

λD (w ) dw −
∫ t P 

0 

λP (w ) dw 

)
, 

here X ∗ = { X(w ) | 0 ≤ w ≤ max (t D , t P ) } . This standard assumption

f conditional independence of the time to each risk occurring

eans that, if the model parameter values were known in addition

o the value of the covariates, then the occurrence of one of the

isks does not change the distribution of the time to the other. This

ssumption allows for a considerable simplification in the compu-

ation of the inference procedure and yet does still permit some

ependence between the times because they share common co-

ariates. 

An active mortgage lifetime observed as t implies that neither

 default nor a prepayment occurs by time t , that is, both default

nd prepayment are right-censored at t . This includes the event

hat the mortgage matures at time T . 

Empirical evidence suggests that the default rate is non-

onotonic. As discussed by Soyer and Xu (2010) , it is reasonable to

xpect that the default rate is first increasing and then decreasing.
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A lifetime model having such hazard rate behavior is the lognormal

model, other alternatives being generalised Gamma or log-logistic

distribution which can also be entertained in our framework. Thus,

we assume that baseline time to default T D follows a lognormal

model with probability density function 

p(t D | μ, σ 2 ) = 

1 √ 

2 πσ 2 t D 
exp 

(
− 1 

2 σ 2 
( log (t D ) − μ) 2 

)
, t > 0 . 

Since it is not unreasonable to expect a similar behavior in the pre-

payment rate, we also assume that the baseline distribution of T P is

also lognormal. Thus, the baseline model for T D will be lognormal

with parameters μD and σ 2 
D , and for prepayment with parameters

μP and σ 2 
P 

. 

The failure rate of the lognormal distribution can be written in

terms of the standard Gaussian distribution function �. In fact the

failure rates for T D and T P then take the form: 

λD (t | X D (t)) = 

(2 πσ 2 
D ) 

−1 / 2 t −1 exp 

(
−0 . 5( log (t) − μD ) 

2 /σ 2 
D 

)
1 − �(( log (t) − μD ) /σD ) 

exp 

(
θ ′ 

D X D (t) 
)

(3)

and 

λP (t | X P (t)) = 

(2 πσ 2 
P ) 

−1 / 2 t −1 exp 

(
−0 . 5( log (t) − μP ) 

2 /σ 2 
P 

)
1 − �(( log (t) − μP ) /σP ) 

exp 

(
θ ′ 

P X P (t) 
)
; (4)

see the Appendix for details on derivation of 3 and 4 . 

3. Bayesian analysis of the competing risk PHM 

We assume that data on N mortgages are available. From these,

n D have defaulted, n P have prepayed and n C = N − n D − n P are

still active, including those that have matured successfully. The

N mortgages are indexed i = 1 , . . . , n D for the defaulted mort-

gages, i = n D + 1 , . . . , n D + n P for prepaid and i = n D + n P + 1 , . . . , N

for active. Let t D = { t D 1 , . . . , t 
D 
n D 

} be the times of default and t P =
{ t P n D +1 , . . . , t 

P 
n D + n P } be the times of prepayment. For the n C mort-

gages that are still active, let t C = { t C 
n D + n P +1 

, . . . , t C 
N 
} be the times

since the initiation of mortgages; t C 
i 

= T M 

for those that have ma-

tured. 

Also observed are the covariates. Let X i (t) = (X i 1 (t ) , . . . , X im 

(t ))

be the vector of covariates for mortgage i at time t . Some of these

are common covariates e.g. interest rates, while others are mort-

gage specific e.g. mortgage size or credit score. We assume that

they are observed at a known set of times τ 1 < τ 2 < ��� < τm 

and

that they are piecewise constant on intervals for which these times

are the mid-points. Hence 

X i (t) = X i (τ j ) , s j−1 < t ≤ s j , (5)

for j = 1 , . . . , m, where s 0 = 0 , s j = 0 . 5(τ j + τ j+1 ) for j =
1 , . . . , m − 1 and s m 

= ∞ . We let X i = { X i (τ1 ) , . . . , X i (τm 

) } be

the observed covariates for mortgage i and X = { X i (τk ) | i =
1 , . . . , N; k = 1 , . . . , m } be the set of all observed covariates. We

would like to reiterate here that the set of covariates could be

specific to mortgage type (default/prepay). 

The unknown quantities in this model are the regression pa-

rameters θD and θP , and the baseline failure rate parameters ψ =
(μD , σ

2 
D 
, μP , σ

2 
P 
) . The required posterior distribution is therefore: 

p(θD , θP , ψ | t D , t P , t C , X ) ∝ p(t D , t P , t C | θD , θP , ψ, X ) 

p(θD ) p(θP ) p(ψ) . (6)

For the likelihood term P (t D , t P , t C | θD , θP , ψ, X ) , we assume ob-

servations are conditionally independent, given the parameters.

From the competing risks assumption, an observation t D 
i 

is an ex-

act observation of T and a right-censored observation of T ; it is
D P 
ice versa for t P 
i 

. Finally, t C 
i 

is a right-censored observation of both

 D and T P . Hence: 

p(t D , t P , t C | θD , θP , ψ, X ) 

= 

( 

n D ∏ 

i =1 

p(t D i | θD , X i ) P (T P > t D i | θP , X i ) 

) 

×
( 

n D + n P ∏ 

i = n D +1 

p(t P i | θP , X i ) P (T D > t P i | θD , X i ) 

) 

×
( 

N ∏ 

i = n D + n P +1 

P (T D > t C i | θD , X i ) P (T P > t C i | θP , X i ) 

) 

= 

( 

n D ∏ 

i =1 

λD (t D i | X i (t D i )) exp 

×
(

−
∫ t D 

i 

0 

λD (w | X i (w )) + λP (w | X i (w )) dw 

))

×
( 

n D + n P ∏ 

i = n D +1 

λP (t P i | X i (t P i )) exp 

×
(

−
∫ t P 

i 

0 

λD (w | X i (w )) + λP (w | X i (w )) dw 

))

×
( 

N ∏ 

i = n D + n P +1 

exp 

(
−

∫ t C 
i 

0 

λD (w | X i (w )) + λP (w | X i (w )) dw 

)) 

(7)

here λD ( t | X i ( t )) and λP ( t | X i ( t )) are given by Eqs. (3) and (4) ,

 i ( t ) is given in Eq. (5) and a formula for the integrals is given

n Eq. A.4 of the Appendix. The formula for the integrals is more

omplex for time varying covariates, as noted in Cox and Oakes

1984) . 

An independent zero-mean normal prior is assumed for each

omponent of θD and θP , as well as μD and μP . For σ D and σ P ,

ince no prior provides us with known full conditionals, an expo-

ential prior is assumed. It is noted that a lognormal or gamma

rior could also have been chosen. 

The model above is such that the parameters are not identifi-

ble without further assumptions. For a Bayesian analysis, such as

urs, that means whether the data can inform well enough about

ll the parameters. Identifiability issues can be overcome via spe-

ific prior specification or model dimension reduction; see Gelfand

nd Mallick (1995) . For example, if posterior distributions of pa-

ameters are different from their priors, the problem of identifia-

ility is resolved. For those parameters where the priors and the

osteriors are the same, the problem remains and can be solved

sing an improper prior (if it results in a proper posterior) or re-

ucing dimension. We will see in the results that for the default

odel, identifiability is present. It is attributable to the low num-

er of default mortgages under which parameter learning becomes

ery difficult; no such issue exists for the parameters under the

repaid model. 

An MCMC procedure, based on the Metropolis within Gibb’s

ampler ( Tierney, 1994 ), has been implemented to sample from

p(θD , θP , ψ | t D , t P , t C , X ) . The covariate coefficient vectors θD and

P are updated as blocks from their full conditional distributions

ith a Gaussian random walk proposal, while each component of

 is updated separately. The Appendix contains the details of the

lgorithm. 

The MCMC output is a set of samples of all the unknowns from

he posterior distribution. Let the number of samples be G , and
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et θ (g) 
D 

, θ (g) 
P 

and ψ 

( g ) denote the g th samples of ψ , θD and θP ,

espectively. 

The MCMC output can be used to compute many quantities of

nterest. With the posterior samples, one can compute for a mort-

age with a known set of covariates X = { X(w ) | w ≥ 0 } . The poste-

ior predictive reliability function of the time to default is approx-

mated by 

 (T D > t | t D , t P , t C , X , X ) ≈ 1 

G 

G ∑ 

g=1 

exp 

(
−

∫ t 

0 

λ(g) 
D 

(w ) dw 

)
, (8)

nd the time to prepayment is approximated by 

 (T P > t | t D , t P , t C , X , X ) ≈ 1 

G 

G ∑ 

g=1 

exp 

(
−

∫ t P 

0 

λ(g) 
P 

(w ) dw 

)
, (9)

here λ(g) 
D 

(w ) = r 
(g) 
D 

(w | ψ) exp (θ (g) ′ 
D 

X(w )) and λ(g) 
P 

(w ) =
 

(g) 
P 

(w | ψ) exp (θ (g) ′ 
P 

X(w )) , the values of r 
(g) 
D 

(w | ψ) and r 
(g) 
P 

(w | ψ)

re given by Eq. (A.1) , using the parameter values in ψ 

( g ) , and a

ormula for the integrals is given by Eq. (A.4) of the Appendix. 

Eqs. (8) and (9) allows us to determine, by simulation, the

robability that a mortgage will default, prepay or mature with a

iven set of covariates X . The inverse distribution method can be

sed to simulate independently many values pairs ( t D , t P ) from

hese reliability functions e.g. for t D , generate a random number

 and then solve u = P (T D > t | t D , t P , t C , X , X ) for t , an easy nu-

erical exercise. This further means we can compute predictive

ensities P (T D | t D , t P , t C , X , X ) and P (T P | t D , t P , t C , X , X ) for each

ortgage as well. Furthermore to this, the probabilities that a loan

efaults, prepays or matures are approximated by the proportion

f simulated pairs ( t D , t P ) that lie in their respective regions as

efined in Fig. 1 : 

efaults ⇔ t D < T M 

and t D < t P ;
Prepays ⇔ t P < T M 

and t P < t D ;
atures ⇔ t D ≥ T M 

and t P ≥ T M 

. 

ince the marginal density is 

f (t) = λ(t ) R (t ) , 

here λ( t ) is failure rate and R ( t ) is reliability function as defined

n Eqs. (8) and (9) , so the posterior density function for T D is

pproximated by 

f D (t) ≈ 1 

G 

G ∑ 

g=1 

λ(g) 
D 

(t) exp 

(
−

∫ t 

0 

λ(g) 
D 

(w ) dw 

)
. 

 similar expression holds for f P ( t ). 

. The Freddie Mac single family loan dataset 

The Federal Home Loan Mortgage Corporation (FHLMC), known

s Freddie Mac, is a public company that is sponsored by the

nited States government. It was formed in 1970 to expand the

econdary market for mortgages in the US. It has provided a

ataset about single family loan-level credit performance data on a

ortion of fully amortizing fixed-rate mortgages that the company

urchased or guaranteed. The dataset contains information about

pproximately 21.5 million fixed-rate mortgages that originated be-

ween January 1, 1999, and December 31, 2014. The dataset can be

ownloaded from the Freddie Mac website and is organised as two

les for each quarter: 

1. the origination data file that contains data concerning the set

up of the loan; 

2. the monthly performance data file that contains the monthly

performance of each loan e.g. amount repaid, the outstanding
principal, whether it is in default, etc. s
There is also a smaller sample data set that contains a simple

andom sample of 50,0 0 0 loans selected from each year and a pro-

ortionate number of loans from subsequent years (the actual def-

nition is 50,0 0 0 loans selected from each full vintage year and a

roportionate number of loans from each partial vintage year of

he full single family loan-level data set). The sample data set also

as an origination and monthly performance file for each year 

Some processing of the raw data was needed to transform it

nto a format that can be be analysed by this model. Each loan

as tracked through the data to categorize it as active, defaulted

r prepaid. Since loans in the dataset originated in 1999 and are

alid for 30 years, there were no loans classified as mature and so

his category could be ignored. 

The data is highly unbalanced. This is well noted in the liter-

ture, with default rates typically staying around 1% to 2.5% for

onventional mortgage loans whereas for subprime loans default

ates rise over 14% in some years, see for example Danis and

ennington-Cross (2008) . 

.1. Loan categorization 

Four fields in the data were used to categorize each loan as de-

ault, prepay or active, and to define the observed time: 

• zero_balance defines whether a particular loan’s balance

has reduced to 0 or not, and has the following codes: 

01 Prepaid or Matured (voluntary payoff); 

03 Foreclosure Alternative Group (Short Sale, Third Party Sale,

Charge Off or Note Sale); 

06 Repurchase prior to Property Disposition; 

09 REO Disposition; and 

mpty Not Applicable. 
• delinquency provides a value corresponding to the number

of days the borrower has not paid the loan, according to the

due date of last paid installment, or if a loan is acquired by

REO, coded as: 

0 Current, or less than 30 days past due; 

1 30–59 days delinquent; 

2 50–89 days delinquent; 

3 90–119 days delinquent, etc.; 

R REO acquisition; 

mpty Unavailable. 
• reporting_date is the month that the observation is made

in. 
• months_remain is the number of months until the legal ma-

turity of the loan. 

Then the loan status was defined as: 

• Prepaid if there exists a month where zero_balance = 01

AND repurchase = “N”. In this case, the prepaid time t P 
is the time from loan origination to the reporting_date
where this first happens. 

• Default if there exists a month where zero_balance = 03,

06 or 09. In this case, the default time t D is the time from loan

origination to the reporting_date where this first happens.
• Active if the loan could not be classified as Prepaid or Active

AND the latest reporting_date corresponding to the loan

is later than 01/01/2014 AND zero_balance is empty at that

latest date AND delinquency is not equal to R at that latest

date. The active time is the time from loan origination to the

reporting_date where this happens. 

These definitions are not exhaustive; there are loans in the

ataset that are discontinued without any clear information and

uch loans have been excluded from our analysis. 

Gupta, Varun
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Fig. 2. Histogram of time to default, prepaid and active times for each category. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Summary of the marginal posterior distribu- 

tions of the baseline default and prepay rates. 

Parameter Median 95% Prob. Interval 

μD 2.817 (2.631, 3.077) 

σ D 0.963 (0.916, 1.028) 

μP 1.578 (1.566, 1.591) 

σ P 0.717 (0.713, 0.721) 
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4.2. Covariates 

The following covariates (fixed term) are available in the

dataset: credit score, mortgage insurance percentage (MI), num-

ber of units, combined loan-to-value (CLTV), debt-to-income (DTI),

unpaid principal balance (UPB), original interest rate, number of

borrowers, first homebuyer, occupancy status, property type, prop-

erty state (state in which property resides) and current inter-

est rate. Original interest rate refers to the rate at loan initiation

while current interest rate contains monthly interest rates since

loan start time. So the latter is the only variable whose values

changes with time. Out of the rest, first homebuyer, occupancy

status, property type and property state are categorical variables

and have been converted to indicator variables. The covariate prop-

erty state has been re-categorized into judicial or non-judicial state

(renamed Foreclosure state ), where in a judicial state, the lender

needs to go through the court system for the foreclosure process.

For the rest of the categorical variables, some of categories were

of low frequency. For example, there are 6 categories in variable

property_type , of which 81% were single family home
and some categories like leasehold accounting for as low as

0.0 0 03%. It was decided to group categories with extremely low

frequencies for all the categorical variables. All the quantitative

variables have been standardized. Furthermore strong correlation

have been found between mortgage insurance percentage
and combined loan-to-value , and between original and cur-

rent interest rates which led us to drop the latter in both the

cases. Since current interest rate has been dropped we do

not have to work with any time dependent covariate. 

5. Analysis of the data 

The data set comprised of 672208 mortgages originating in the

year 1999. This data set is extremely unbalanced with 95% of the

mortgages being prepaid , 3% being active and the only about

1.6% belonging to default category. This huge imbalance is evi-

dent in Fig. 2 . 

Both θD and θP had Normal prior with zero mean and standard

deviation 100. The mean parameters μD and μP have zero mean

Normal priors with standard deviation 10, while an exponential

prior with mean 100 was assumed for the standard deviation

parameters σ D and σ P . The starting value of each of the param-

eter chains were randomly selected using Normal and inverse

gamma distributions for mean and standard deviation parameters

respectively. The standard deviation for the proposal distributions,
or example s 2 
θ,D 

or s 2 μ,D 
have also been generated randomly from

nverse gamma distributions to provide more diversity in the

hains. The scale parameter ( a ) used in proposal for σ D and σ P 

as generated from uniform distribution. 

Rcpp ( Eddelbuettel & François, 2011 ) has been used to construct

he MCMC algorithm. This has greatly improved the speed of the

lgorithm given that the data set is extremely large. The MCMC

rocedure was run in 50 chains for 75,0 0 0 iterations each. We set

CMC burn-in at 60 0 0 0 and thinned the remaining by selecting

very 50 th sample. Trace plots, provided in the Appendix, for all

he parameters show good mixing for all the covariates implying

onvergence. We provide the density plot constructed by combin-

ng the thinned chains for a subset of covariates in Fig. 3 . The skew

n the density of μD is caused by the slow convergence of a sin-

le chain. We assume that this single chain suffers from slow con-

ergence due to the problem of identifiability in proportional haz-

rds models. The problem is further enhanced by the fact that the

umber of default mortgages is very low, hence making sufficient

earning difficult. 

Tables 1 and 2 are summaries of the marginal posterior dis-

ributions of the model parameters, based on the 15,0 0 0 com-

ined samples of the MCMC. We see in table 2 that nearly

ll the covariates, with the exception of no. of units , turn

ut to be significant. Credit score , UPB , no. of units ,
ype of property and no. of borrowers have opposite

ffects on default and prepay rates. Default rate is found to

ecrease with credit score , UPB etc, as it should be, and

repay rate increases for the same. Other variables, for ex-

mple, DTI , mortgage insurance % , original interest
ate , first time homebuyer , occupancy status and

oreclosure state have the same signs of coefficients for

oth of default and prepay, which is consistent with other find-

ngs from the literature; see for example Deng and Haghani (2018) .

hus we can see that for mortgage insurance % both default

nd prepay rate increase, whereas for first time homebuyer
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Fig. 3. Density plot of combined samples from merging all the chains for credit score, number of units and μ, both for default (d) and prepaid (p) times. The long tail 

corresponding to μ(d) can be attributed to a single chain which is slow in converging. 

Table 2 

Summary of the marginal posterior distributions of θD and θ P . The 95% probability inter- 

vals are the 2 . 5 − 97 . 5 percentiles of the sampled parameter values. Number of units under 

default mortgages is the only covariate that can be termed as not-significant, since the CI 

contain 0. 

Covariate Default Prepay 

Median 95% Prob. Interval Mean 95% Prob. Interval 

Credit score −0.601 ( −0.620, −0.583) 0.128 (0.125, 0.130) 

Mortgage insurance % 0.395 (0.376, 0.415) 0.068 (0.065, 0.070) 

Number of units 0.014 ( −0.005, 0.031) −0.051 ( −0.053, −0.048) 

Original DTI 0.124 (0.103, 0.146) 0.020 (0.018, 0.023) 

UPB −0.069 ( −0.093, −0.046) 0.305 (0.302, 0.307) 

Original interest rate 0.412 (0.396, 0.429) 0.376 (0.374, 0.379) 

No. of borrowers −0.296 ( −0.316, −0.276) 0.055 (0.052, 0.058) 

Intercept −3.090 ( −3.356, −2.694) 0.182 (0.158, 0.207) 

First time home-buyer −0.244 ( −0.293, −0.194) −0.009 ( −0.016, −0.003) 

Occupancy status 0.460 (0.342, 0.575) 0.249 (0.237, 0.261) 

Foreclosure state −0.110 ( −0.149, −0.071) −0.080 ( −0.085, −0.075) 

Property type 0.304 (0.249, 0.362) −0.061 ( −0.67, −0.054) 

∗Covariate Foreclosure state refers to whether the state is judicial or non-judicial. 
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oth the rates decrease. Also note that the estimated mean param-

ter (as also for the standard deviation parameter) of the baseline

efault rate is substantially greater than that of prepay. 

The posterior predictive densities for time to default (or pre-

ay) corresponding to each mortgage can be computed using

qs. (8) and (9) (see discussion following these two equations).

ig. 4 shows predictive posterior distribution of time to default

or 3 randomly chosen mortgages in the top panel. A similar plot

orresponding to time to prepay has been provided in the lower

anel. The posterior predictive densities for time to default are

enerally found to be flat, while those for prepay have variable
hapes. Note that the area under the densities do not necessarily

um to 1 in these plots since we have truncated them at 2029, the

aturity date of the mortgages. 

The mortgages and their covariate values are provided in

able 3 . 

. Model assessment 

The suitability of the model is assessed by deriving, for each

oan in the data: 
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Fig. 4. The two panels provide posterior predictive distributions of time to default and prepay, respectively. The flat posterior predictive distribution of time to default is 

very common in almost all mortgages, while for prepay the shape of the distributions are quite varying. Note that some of the distributions are truncated at 2029, the year 

the mortgages end. 

Table 3 

The values of the covariates for the 6 mortgages that have been used for computing the posterior 

predictive densities in Fig. 4 is provided here. Abbreviations used are: “Owner” - “Owner occu- 

pied”, “Non-Jud”/“Jud” - “Non-Judicial”/“Judicial” and “SF” - “Single family”. 

Covariate Default Prepay 

Mortgage number 1 2 3 1 2 3 

Credit score 724 541 750 787 668 619 

Mortgage insurance % 12 30 0 0 0 30 

Number of units 1 1 1 1 1 1 

Original DTI 16 27 23 39 34 44 

UPB 73,0 0 0 112,0 0 0 83,0 0 0 37,0 0 0 312,0 0 0 204,0 0 0 

Original interest rate 6.875 10 8 6.875 7 9.625 

No. of borrowers 2 2 2 1 2 2 

First time home-buyer No No No No No No 

Occupancy status Owner Owner Owner Owner Owner Owner 

Foreclosure state Non-Jud Jud Non-Jud Non-Jud Non-Jud Non-Jud 

Property type SF SF SF SF SF SF 
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• The probabilities that the loan defaults, prepays or remains

active up to the end of the data, following the method in

Section 3 , which can be compared to the actual outcome; 
• If the mortgage defaulted then the predicted reliability func-

tion of the default time can also be computed from Eq. (8) , and

hence the quantile of the observed time. A standardised resid-

ual can also be computed e.g. (t D − E(t D )) / sd ( t D ), where t D is

the observed default time, E ( t D ) and sd ( t D ) are the mean and

standard deviation of the posterior default time, derived from

the predicted reliability function. 
• Similarly, if the mortgage was prepaid then the predicted re-

liability function of the prepay time can be computed from

Eq. (9) . The quantile of the observed prepay time and a stan-

dardised residual can be derived. 

Active loans are right-censored observations of both the default

and prepay times. The competing hazards model implies that de-

fault times are also right-censored observations of a prepay time,

and vice versa. 

We assessed the fitted model on the sample data set in the

year 1999, which has 30 , 755 mortgages. Fig. 5 shows a box plot of

standardised residuals (as explained above) for all the default and
he prepaid mortgages and is found to be centered around 0. If

e isolate the defaulted mortgages we find that the corresponding

esiduals are biased away from 0. Identifying mortgages that

efaulted is found to be difficult form that data we have since

hey constitute less than 2% of the whole set. 

Separate box plots of standardised residuals for mortgages show

 good fit for prepay, where residuals are slightly biased away from

. However, for default mortgages almost all residuals are negative,

hich shows that the estimated mean time to default is higher

han what was observed. We think that this can be largely at-

ributed to huge contrast in proportion of each type of mortgages

n the data set. 

The central 95% posterior prediction interval for the time to

repayment or default showed good coverage properties for what

as observed, at 93% e.g. 93% of observed prepayment or default

imes lie within their 95% posterior prediction interval. When split

y the type of event, the observed prepaid mortgages had 95% cov-

rage but the default mortgages had rather poor coverage at only

0%. Although the objective of our proposed model is not classi-

cation, we have compared our coverage percentages with classi-

cation performances of machine learning (ML) methods such as
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Fig. 5. Residuals of all the default and prepay mortgages combined. Note the slight 

bias below 0 which is caused by the default mortgages. 
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andom forest (RF) and logistic regression with lasso (see Appendix

or results). We found that RF classified defaulted mortgages cor-

ectly 27.8% of the time which is lower than our coverage proba-

ility of 50%. The prepaid mortgages were classified correctly 100%

f the time by the RF compared to our coverage probability of

5%. Logistic regression with lasso performed even poorly than RF

or default mortgages at 0.0034%, while prepaid success prediction

as at par. In other words, the proposed Bayesian model, in addi-

ion to providing more insights, has given better results in predict-

ng defaults and almost as good results in predicting prepayments

ompared to RF. 

The analysis suggests that we appear to be under-estimating

he uncertainty in the default times. This can be explained by

he imbalance in the data, with poor learning because of a much

maller number of observations of default, or by missing impor-

ant covariates such as the location of the mortgaged property,

ocal conditions and regulations as well as other borrower char-

cteristics; see for example Goodman and Smith (2010) . Also, as

ointed out by a reviewer, the fact that default and prepayment

ehaviours are motivated by different factors may contribute to
�
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Fig. 6. Separate box plots of residuals corresponding to default and prepay m
his. The model can possibly be improved by using behaviour spe-

ific covariates. As for this idea, while our method and logistic

egression allows a different set of borrower covariates for de-

ault/prepay behaviour, RF provides a single unified set. 

The contrast between default and prepaid mortgages is also ev-

dent when we calculated the predicted reliability function at the

bserved default or prepayment time. The median predicted re-

iability function for default mortgages is found to be 0.976 and

2.5, 97.5) quantiles being (0.740, 0.999), while those for prepaid

re 0.524 (0.041, 0.981). This confirms that in general the estima-

ion of prepayment time performs well but that we over-estimate

he default time. The box plots in Fig. 7 demonstrates the range

f posterior reliability corresponding to both default and prepaid

ortgages. Reliability is computed at the time to default or prepay.

. Conclusion and future work 

In this paper we have introduced a model for the time to mort-

age prepayment or default as a function of mortgage covariates.

he proposed competing risks model allows one to take account

f the fact that an observation of a mortgage prepay is also a cen-

ored observation of a default, and vice versa; hence observation of

ne does contain information about the other that should be used

n inference. Model inference can be done even for quite large data

ets, as has been illustrated here for a set of single family loan data

rom Freddie Mac, where the relative effects of the different co-

ariates on eventual prepayment or default have been quantified.

ome difficulties with the inference were encountered, particularly

or the defaults that were only a small percentage of the data. In

articular, the identifiability issues with this model can cause some

onvergence issues with the MCMC implementation of the infer-

nce. 

A natural extension of this work is to consider heterogene-

ty between mortgages, which would allow one to explore the

etween-mortgage variability and identify clusters of mortgages

ith similar properties. A random effects model is a simple way

o allow for this e.g. the failure rates for mortgage i are now 

D,i (t, | X D,i (t)) = r D (t) exp (θ T 
D X D,i (t) + φD,i ) and 

λP,i (t, | X D,i (t)) = r P (t) exp (θ T 
P X D,i (t) + φP,i ) , 

here φD , i and φP , i have a zero-mean prior distribution such as a

aussian with variances that are either known or are also specified

y prior distributions. The φD , i and φP , i quantify the differences
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ortgages. The residuals for default mortgages show clear bias below 0. 
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Fig. 7. Box plots of posterior predictive reliability function computed for mortgages at time to default and prepay. 
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between default and prepay times from the average behaviour that

is specified through θD and θP . In terms of implementing inference

for his model, the full conditional distributions of θD and θP , as

needed for the MCMC, remain accessible to the Metropolis algo-

rithm with minor modifications. The full conditional distributions

for the φD , i and φP , i are also accessible; the main difficulty is the

very large increase in the number of parameters to be inferred as

we have added 2 for every mortgage in the data set, with a result-

ing slowdown in the computation time. 
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Appendix 

Deriving the failure rate of the lognormal distribution 

Let T be a lognormally distributed random variable with param-

eters μ and σ 2 and density function 

f (t | μ, σ 2 ) = 

1 √ 

2 πσ 2 t 
exp 

(
− 1 

2 σ 2 
( log (t) − μ) 2 

)
. 

The failure rate is defined as 

r(t) = 

f (t | μ, σ 2 ) 

P ( T > t | μ, σ 2 ) 
= 

f ( t | μ, σ 2 ) ∫ ∞ 

t f ( s | μ, σD ) ds 
. 

The lognormal failure rate can be calculated in terms of the nor-

mal cdf because T has the property that log ( T ) is normally dis-

tributed. Therefore ∫ ∞ 

t 

f (s | μ, σ 2 ) ds = 1 − P (T < t) = 1 − P ( log (T ) < log (t)) 

= 1 − �(( log (t) − μ) /σ ) , 

where � is the standard normal cdf. Hence 

r(t) = 

(2 πσ 2 ) −1 / 2 t −1 exp 

(
−0 . 5( log (t) − μ) 2 /σ 2 

)
1 − �(( log (t) − μ) /σ ) 

. (A.1)

Computing the integral of the failure rate function 

The integral of the failure rate function appears in the likeli-

hood function. It is assumed that the covariates X ( t ) vary piece-

wise constantly on intervals with mid-points τ < τ < ��� < τm 

. So
1 2 
(t) = X(τ j ) for s j−1 < t ≤ s j , with interval end-points s 0 = 0 and

 j = 0 . 5(τ j + τ j+1 ) , j = 1 , . . . , m, with τm +1 = ∞ . 

Let m 

′ = max { j | τ j < t D } . The integral of the failure rate, needed

n the specification of the distribution of T D , is then: 

 t D 

0 

λD (w | X D (w )) dw = 

m 

′ ∑ 

j=1 

exp (θ ′ 
D X D (τ j )) 

∫ s j 

s j−1 

r D (w ) dw 

+ exp (θ ′ 
D X D (τ j )) 

∫ t D 

s m ′ 
r D (w ) dw (A.2)

The integral of the lognormal failure rate can be calculated in a

losed form expression, using the fact that log ( T ) is Gaussian, and

hat 

log (P (T > t)) = 

∫ t 

0 

r(s ) ds 

olds for any failure rate, so that: 

 t b 

t a 

r(s ) ds = 

∫ t b 

0 

r(s ) ds −
∫ t a 

0 

r(s ) ds 

= − log (P (T > t b )) + log (P (T > t a )) 

= − log (1 − �[( log (t b ) − μ) /σ ]) 

+ log (1 − �[( log (t a ) − μ) /σ ]) . (A.3)

Substituting Eq. (A.3) into Eq. (A.2) gives: ∫ t D 

0 

λD (w | X D (w )) dw 

= 

m 

′ ∑ 

j=1 

exp (θ ′ 
D X D (τ j )) 

[
− log (1 − �[( log (s j ) − μD ) /σD ]) 

+ log (1 − �[( log (s j−1 ) − μD ) /σD ]) 

]

+ exp (θ ′ 
D X D (τm 

′ )) 

[
− log (1 − �[( log (t D ) − μD ) /σD ]) 

+ log (1 − �[( log (s m 

′ ) − μD ) /σD ]) 

]
(A.4)

The integral for T P , 
∫ t P 

0 
λP (w | X P (w )) dw is also given by

q. (A.4) with t D , θD , μD and σ D replaced by t P , θP , μP and σ P 

espectively. 

https://doi.org/10.13039/501100001602
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Fig. 8. Trace plot of all distributional parameters. For parameters in default category, the single slow converging chain is visible here as well. 
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etails of the MCMC Algorithm for the homogeneous model 

Sampling of the posterior distribution of Eq. (6) , with likelihood

iven by Eq. (7) , is done by a Metropolis within Gibbs algorithm.

ach block of parameters are sampled from their full conditional

istribution, with those samples obtained through a Metropolis

roposal, as follows: 

Sample θD . From a current value θD , a random walk proposal
∗
D 

is made from a Gaussian with mean θD and variance s 2 
θ,D 

I m ×m 

,

here I m × m 

is the identity matrix of dimension m and s 2 
D 

is tuned

o provide a reasonable acceptance rate. The proposal is accepted

ith probability 

min 

{
1 , 

p(t D , t P , t C | θ ∗
D , θP , ψ, X ) p(θ ∗

D ) 

p(t D , t P , t C | θD , θP , ψ, X ) p(θD ) 

}

= min 

{
1 , 

p(θ ∗
D ) 

∏ n D 
i =1 

λ∗
D (t D 

i 
| X i (t D 

i 
)) 

p(θD ) 
∏ n D 

i =1 
λD (t D 

i 
| X i (t D 

i 
)) 

exp (−A 

∗ − B 

∗ − C ∗) 
exp (−A − B − C) 

}
, 

here 

 

∗ = 

n D ∑ 

i =1 

∫ t D 
i 

0 

λ∗
D (w | X i (w )) dw, 

B 

∗ = 

n D + n P ∑ 

i = n D +1 

∫ t P 
i 

0 

λ∗
D (w | X i (w )) dw and 

 

∗ = 

N ∑ 

i = n D + n P +1 

∫ t C 
i 

0 

λ∗
D (w | X i (w )) dw, 

nd, 

 = 

n D ∑ 

i =1 

∫ t D 
i 

0 

λD (w | X i (w )) dw, 

B = 

n D + n P ∑ 

i = n D +1 

∫ t P 
i 

0 

λD (w | X i (w )) dw and 

 = 

N ∑ 

i = n D + n P +1 

∫ t C 
i 

0 

λD (w | X i (w )) dw. 
ψ

∗
D (t | X(t)) is given by Eq. (3) with θD = θ ∗

D , X ( t ) is given by

q. (5) and 

∫ t 
0 λD (w | X(w )) dw is given by Eq. (A.4) . 

Sample θP . This is identical to sampling from θD , with

D ( t | X ( t )) replaced by λP ( t | X ( t )) throughout. 

Sample μD . From a current value μD , a random walk proposal
∗
D is made from a Gaussian with mean μD and variance s 2 μ,D ,

here s 2 μ,D 
is tuned to provide a reasonable acceptance rate. The

roposal is accepted with probability 

min 

{
1 , 

p(t D , t P , t C | θD , θP , ψ 

∗, X ) p(μ∗
D ) 

p(t D , t P , t C | θD , θP , ψ, X ) p(μD ) 

}

= min 

{
1 , 

p(μ∗
D ) 

∏ n D 
i =1 

λ∗
D (t D 

i 
| X i (t D 

i 
)) 

p(μD ) 
∏ n D 

i =1 
λD (t D 

i 
| X i (t D 

i 
)) 

× exp (−A 

∗ − B 

∗ − C ∗) 
exp (−A − B − C) 

}
, 

here A 

∗, B ∗, C ∗, A , B and C have already been defined earlier. ψ 

∗ =
(μ∗

D 
, σ 2 

D 
, μP , σ

2 
P 
) , λ∗

D 
(t | X(t)) is given by Eq. (3) with μD = μ∗

D 
,

 ( t ) is given by Eq. (5) and 

∫ t 
0 λD (w | X(w )) dw is given by Eq. (A.4) .

ample μP . This is identical to sampling from μD , with λD ( t | X ( t ))

eplaced by λP ( t | X ( t )) throughout and ψ 

∗ = (μD , σ
2 
D 
, μ∗

P 
, σ 2 

P 
) . 

Sample σ2 
D . From a current value σ 2 

D , a proposal σ 2 , ∗
D 

is gen-

rated from a uniform distribution on the interval (aσ 2 
D , σ

2 
D /a ) ,

here a ∈ (0, 1) is tuned to provide a reasonable acceptance rate.
he proposal is accepted with probability 

min 

{
1 , 

p(t D , t P , t C | θD , θP , ψ 

∗, X ) p(σ ∗, 2 
D 

) p(σ 2 
D | σ 2 , ∗

D 
) 

p(t D , t P , t C | θD , θP , ψ, X ) p(σ 2 
D 
) p(σ 2 , ∗

D 
| σ 2 

D 
) 

}

= min 

{
1 , 

σ 2 
D p(σ 2 , ∗

D 
) 

∏ n D 
i =1 

λ∗
D (t D 

i 
| X i (t D 

i 
)) 

σ 2 , ∗
D 

p(σ 2 
D 
) 

∏ n D 
i =1 

λD (t D 
i 

| X i (t D 
i 
)) 

× exp (−A ∗ − B ∗ − C ∗) 
exp (−A − B − C) 

}
, 

here: ψ 

∗ = (μD , σ
2 , ∗
D 

, μP , σ
2 
P ) , λ∗

D (t | X(t)) is given by

q. (3) with σ 2 
D 

= σ 2 , ∗
D 

, X ( t ) is given by Eq. (5) and
 t 
0 λD (w | X(w )) dw is given by Eq. (A.4) . Terms in the second

ultiplicand e.g. A 

∗, A, . . . etc have already been defined earlier. 

Sample σ2 
P . This is identical to sampling from σ 2 

D 
,

ith λD ( t | X ( t )) replaced by λP ( t | X ( t )) throughout and

 

∗ = (μD , σ
2 
D 
, μP , σ

2 , ∗
P 

) . 
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Fig. 9. Trace plot of all parameters associated with covariates for default category. A single chain for intercept parameter is found to converge much more slowly than the 

others. 
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Fig. 10. Trace plot of all parameters associated with covariates for prepaid category. 
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CMC output plots 

Subsequent figures provide trace plots of all the variables and

istributional parameters from both default and prepaid models.

he problem with convergence of a single chain is noticeable in

he intercept ( β0 ), μ and σ parameters in the default category.

his can possibly be attributed to the twin problem of identifia-

ility and low number of mortgages in this category. A larger pro-
ortion of default mortgages data and/or a longer run of the chain

ould have prevented this problem. 

Trace plots of distributional parameters μd , μp , σ d , σ p are pro-

ided in Fig. 8 . Note the single slow converging chain in the default

ategory. 

The trace plots for all the variables for category default are pro-

ided in Fig. 9 which seem to indicate towards fair convergence.
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Table 4 

Confusion matrix of classification results for the test 

set, for both types of lasso penalties applied to logistic 

regression. Nearly all mortgages have been classified as 

Prepaid . 

Ungrouped 

Predicted default Predicted prepaid 

Default 0 (0.00%) 510 (10 0.0 0%) 

Prepaid 1 (0.0034%) 29252 (99.9966%) 

Grouped 

Predicted default Predicted prepaid 

Default 0 (0.00%) 510 (10 0.0 0%) 

Prepaid 1 (0.0034%) 29251 (99.9932%) 

Table 5 

Confusion matrix of classification results for the test 

set from using random forest. The default classifica- 

tion success rate is 28%, much lower than that of our 

model. 

Predicted default Predicted prepaid 

Default 143 (28.04%) 367 (71.96%) 

Prepaid 0 (0.00%) 29253 (10 0.0 0%) 
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The problem with a single chain is again noticeable in the inter-

cept ( βd 

0 
) trace. 

Trace plots of parameters associated with category prepaid are

provided in Fig. 10 . The traces converge well and seem to have

identified the posteriors satisfactorily. 

Machine learning output 

The ML outputs - logistic regression+lasso and Random Forest

are provided in this section. 

Logistic regression with lasso. Table 4 shows the confusion ma-

trix corresponding to logistic regression + lasso with both un-

grouped and grouped penalties on the coefficients. The latter en-

sures that a grouped lasso penalty is applied on the coefficients,

such that they remain or are dropped together for all categories in

the multinomial. The confusion matrix only contain classification

performance of default and prepayment categories. 

Random Forest. Table 5 is the confusion matrix for the random

forest implementation to our data. Performance is much better that

lasso, however default detection is lower than our model. 

References 

Aktekin, T. , Soyer, R. , & Xu, F. (2013). Assessment of mortgage default risk via

Bayesian state space models. The Annals of Applied Statistics, 7 (3), 1450–1473 . 
Ambrose, B. W. , & Capone, C. A. (1998). Modeling the conditional probability of fore-

closure in the context of single-family mortgage default resolutions. Real Estate
Economics, 26 (3), 391–429 . 

Andritzky, J. R. (2014). Resolving residential mortgage distress: Time to modify?IMF

Working Paper, WP/14/226., IMF. 
Calhoun, C. A. , & Deng, Y. (2002). A dynamic analysis of fixed and adjustable-rate

mortgage terminations. The Journal of Real Estate Finance and Economics, 24 (1),
9–33 . 
iochetti, B. A. , Deng, Y. , Gao, Y. , & Yao, R. (2002). The termination of commercial
mortgage contracts through prepayment and default: A proportional hazard ap-

proach with competing risks. Real Estate Economics, 30 (4), 595–633 . 
ox, D. R. (1972). Regression models and life tables. Journal of the Royal Statistical

Society, Series B, 34 (2), 187–220 . 
ox, D. R. , & Oakes, D. (1984). Analysis of survival data . CRC Press . 

anis, M. A. , & Pennington-Cross, A. (2008). The delinquency of subprime mort-
gages. Journal of Economics and Business, 60 (1–2), 67–90 . 

Deng, R. , & Haghani, S. (2018). FHA Loans in foreclosure proceedings: Distinguish-

ing sources of interdependence in competing risks. Journal of Risk and Financial
Management, 11 (1), 1911–8074 . 

eng, Y. (1997). Mortgage termination: An empirical hazard model with a stochas-
tic term structure. The Journal of Real Estate Finance and Economics, 14 (3), 309–

331 . 
eng, Y. , & Order, R. V. (20 0 0). Mortgage terminations, heterogeneity and the exer-

cise of mortgage options. Econometrica, 68 (2), 275–307 . 

eng, Y. , Quigley, J. M. , & Order, R. V. (1996). Mortgage default and low down pay-
ment loans: The costs of public subsidy. Regional Science and Urban Economics,

26 (3), 263–285 . 
ddelbuettel, D. , & François, R. (2011). Rcpp: Seamless R and C++ integration. Journal

of Statistical Software, 40 (8), 1–18 . 
itzpatrick, T. , & Mues, C. (2016). An empirical comparison of classification algo-

rithms for mortgage default prediction: evidence from a distressed mortgage

market. European Journal of Operational Research, 249 (2), 427–439 . 
alloway, M. , Johnson, A. , & Shemyakin, A. (2017). Time-to-default analysis of

mortgage portfolios. Model Assisted Statistics and Applications, 12 (4), 359–
367 . 

elfand, A. E. , & Mallick, B. K. (1995). Bayesian analysis of proportional hazards
models built from monotone functions. Biometrics, 51 (3), 843–852 . 

ilberto, S. M. , & Houston Jr. , A. L. (1989). Relocation opportunities and mortgage

default. Real Estate Economics, 17 (1), 55–69 . 
Goodman, A. C. , & Smith, B. C. (2010). Residential mortgage default: Theory works

and so does policy. Journal of Housing Economics, 19 (4), 280–294 . 
au, J. B. , Keenan, D. C. , III, W. J. M. , & Epperson, J. F. (1990). Pricing commercial

mortgages and their mortgage-backed securities. The Journal of Real Estate Fi-
nance and Economics, 3 (4), 333–356 . 

iefer, N. M. (2010). Default estimation and expert information. Journal of Business

and Economic Statistics, 28 (2), 320–328 . 
ambrecht, B. M. , Perraudin, W. R. M. , & Satchell, S. (1997). Time to default in the

UK mortgage market. Economic Modelling, 14 (4), 4 85–4 99 . 
Lambrecht, B. M. , Perraudin, W. R. M. , & Satchell, S. (2003). Mortgage default and

possession under recourse: A competing hazards approach. Journal of Money,
Credit and Banking, 35 (3), 425–442 . 

ee, Y. , Rösch, D. , & Scheule, H. (2016). Accuracy of mortgage portfolio risk fore-

casts during financial crises. European Journal of Operational Research, 249 (2),
440–456 . 

eece, D. (2004). Economics of the mortgage market: Perspectives on household deci-
sion making . Wiley-Blackwell . 

essmann, S. , Baesens, B. , Seow, H.-V. , & Thomas, L. C. (2015). Benchmarking
state-of-the-art classification algorithms for credit scoring: An update of re-

search. European Journal of Operational Research, 247 (1), 124–136 . 
iu, F. , Hua, Z. , & Lim, A. (2015). Identifying future defaulters: A hierarchical

Bayesian method. European Journal of Operational Research, 241 (1), 202–211 . 

Olrich, D. (2006). A new era for default management. Mortgage Banking, 66 (6),
127–128 . 

opova, I. , Popova, E. , & George, E. I. (2008). Bayesian forecasting of prepayment
rates for individual pools of mortgages. Bayesian Analysis, 3 (2), 393–426 . 

uercia, R. G. , & Stegman, M. A. (1992). Residential mortgage default: A review of
the literature. Journal of Housing Research, 3 (2), 341–379 . 

oyer, R. , & Xu, F. (2010). Assessment of mortgage default risk via Bayesian reliabil-

ity models. Applied Stochastic Models in Business and Industry, 26 (3), 308–330 . 
Sun, D. , & Berger, J. O. (1993). Recent developments in Bayesian sequential reliabil-

ity demonstration tests. In A. P. Basu (Ed.), Advances in reliability . Amsterdam:
North-Holland . 

ierney, L. (1994). Markov chains for exploring posterior distributions. The Annals of
Statistics, 22 (4), 1701–1728 . 

Tong, E. N. , Mues, C. , & Thomas, L. C. (2012). Mixture cure models in credit scoring:

If and when borrowers default. European Journal of Operational Research, 218 (1),
132–139 . 

http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0001
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0001
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0001
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0001
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0001
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0002
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0002
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0002
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0002
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0003
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0003
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0003
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0003
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0004
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0004
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0004
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0004
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0004
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0004
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0005
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0005
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0006
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0006
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0006
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0006
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0007
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0007
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0007
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0007
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0008
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0008
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0008
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0008
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0009
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0009
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0010
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0010
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0010
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0010
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0011
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0011
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0011
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0011
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0011
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0012
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0012
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0012
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0012
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0013
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0013
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0013
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0013
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0014
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0014
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0014
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0014
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0014
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0015
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0015
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0015
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0015
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0016
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0016
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0016
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0016
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0017
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0017
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0017
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0017
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0018
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0018
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0018
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0018
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0018
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0018
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0019
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0019
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0020
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0020
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0020
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0020
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0020
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0021
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0021
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0021
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0021
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0021
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0022
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0022
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0022
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0022
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0022
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0023
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0023
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0024
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0024
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0024
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0024
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0024
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0024
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0025
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0025
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0025
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0025
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0025
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0026
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0026
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0027
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0027
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0027
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0027
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0027
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0028
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0028
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0028
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0028
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0029
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0029
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0029
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0029
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0030
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0030
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0030
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0030
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0031
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0031
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0032
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0032
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0032
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0032
http://refhub.elsevier.com/S0377-2217(18)30915-9/sbref0032

	A Bayesian approach to modeling mortgage default and prepayment
	1 Introduction and Overview
	2 Competing risk proportional hazards model
	3 Bayesian analysis of the competing risk PHM
	4 The Freddie Mac single family loan dataset
	4.1 Loan categorization
	4.2 Covariates

	5 Analysis of the data
	6 Model assessment
	7 Conclusion and future work
	Acknowledgment
	Appendix
	Deriving the failure rate of the lognormal distribution
	Computing the integral of the failure rate function
	Details of the MCMC Algorithm for the homogeneous model
	MCMC output plots
	Machine learning output

	References


