I’m trying to run the blackbox likelihood example, but am experiencing difficulties. See code below…
I’m using Python 3.8.3, pymc3 3.9.2, theano 1.0.4
pymc3 and theano are installed via pip
import numpy as np
import pymc3 as pm
import theano
import theano.tensor as tt
theano.config.exception_verbosity='high'
def line(theta, x, *args, **kwds):
p_arr = np.array(theta)
return p_arr[1] + x * p_arr[0]
def my_loglike(theta, x, data, sigma):
"""
A Gaussian log-likelihood function for a model with parameters given in theta
"""
model = line(theta, x)
return -(0.5/sigma**2)*np.sum((data - model)**2)
class LogLike(tt.Op):
itypes = [tt.dvector] # expects a vector of parameter values when called
otypes = [tt.dscalar] # outputs a single scalar value (the log likelihood)
def __init__(self, loglike, data, x, sigma):
# add inputs as class attributes
self.likelihood = loglike
self.x = x
self.data=data
self.sigma=sigma
def perform(self, node, inputs, outputs):
# the method that is used when calling the Op
theta, = inputs # this will contain my variables
# call the log-likelihood function
logl = self.likelihood(theta, self.x, self.data, self.sigma)
outputs[0][0] = np.array(logl)
# set up our data
N = 10 # number of data points
sigma = 1. # standard deviation of noise
x = np.linspace(0., 9., N)
mtrue = 0.4 # true gradient
ctrue = 3. # true y-intercept
truemodel = line([mtrue, ctrue], x)
# make data
np.random.seed(716742) # set random seed, so the data is reproducible each time
data = sigma*np.random.randn(N) + truemodel
ndraws = 3000 # number of draws from the distribution
nburn = 1000 # number of "burn-in points" (which we'll discard)
logl = LogLike(my_loglike, data, x, sigma)
with pm.Model():
# your external function takes two parameters, a and b, with Uniform priors
m = pm.Uniform('m', lower=-10., upper=10.)
c = pm.Uniform('c', lower=-10., upper=10.)
# convert m and c to a tensor vector
theta = tt.as_tensor_variable([m, c])
# use a DensityDist (use a lamdba function to "call" the Op)
pm.DensityDist('likelihood', lambda v: logl(v), observed={'v': theta})
pm.sample(ndraws, tune=nburn, discard_tuned_samples=True, start={'m':0.4, 'c':3})
I get the following stack trace after the sampling:
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Initializing NUTS failed. Falling back to elementwise auto-assignment.
Multiprocess sampling (2 chains in 2 jobs)
CompoundStep
>Slice: [c]
>Slice: [m]
Could not pickle model, sampling singlethreaded.
Sequential sampling (2 chains in 1 job)
CompoundStep
>Slice: [c]
>Slice: [m]
100.00% [4000/4000 00:03<00:00 Sampling chain 0, 0 divergences]
100.00% [4000/4000 00:03<00:00 Sampling chain 1, 0 divergences]
Sampling 2 chains for 1_000 tune and 3_000 draw iterations (2_000 + 6_000 draws total) took 9 seconds.
---------------------------------------------------------------------------
MissingInputError Traceback (most recent call last)
<ipython-input-8-2463a9902c60> in <module>
72 # use a DensityDist (use a lamdba function to "call" the Op)
73 pm.DensityDist('likelihood', lambda v: logl(v), observed={'v': theta})
---> 74 pm.sample(ndraws, tune=nburn, discard_tuned_samples=True, start={'m':0.4, 'c':3})
~/miniconda3/envs/dev3/lib/python3.8/site-packages/pymc3/sampling.py in sample(draws, step, init, n_init, start, trace, chain_idx, chains, cores, tune, progressbar, model, random_seed, discard_tuned_samples, compute_convergence_checks, callback, return_inferencedata, idata_kwargs, **kwargs)
597 if idata_kwargs:
598 ikwargs.update(idata_kwargs)
--> 599 idata = arviz.from_pymc3(trace, **ikwargs)
600
601 if compute_convergence_checks:
~/miniconda3/envs/dev3/lib/python3.8/site-packages/arviz/data/io_pymc3.py in from_pymc3(trace, prior, posterior_predictive, log_likelihood, coords, dims, model, save_warmup)
521 InferenceData
522 """
--> 523 return PyMC3Converter(
524 trace=trace,
525 prior=prior,
~/miniconda3/envs/dev3/lib/python3.8/site-packages/arviz/data/io_pymc3.py in __init__(self, trace, prior, posterior_predictive, log_likelihood, predictions, coords, dims, model, save_warmup)
157 self.dims = {**model_dims, **self.dims}
158
--> 159 self.observations, self.multi_observations = self.find_observations()
160
161 def find_observations(self) -> Tuple[Optional[Dict[str, Var]], Optional[Dict[str, Var]]]:
~/miniconda3/envs/dev3/lib/python3.8/site-packages/arviz/data/io_pymc3.py in find_observations(self)
170 elif hasattr(obs, "data"):
171 for key, val in obs.data.items():
--> 172 multi_observations[key] = val.eval() if hasattr(val, "eval") else val
173 return observations, multi_observations
174
~/miniconda3/envs/dev3/lib/python3.8/site-packages/theano/gof/graph.py in eval(self, inputs_to_values)
520 inputs = tuple(sorted(inputs_to_values.keys(), key=id))
521 if inputs not in self._fn_cache:
--> 522 self._fn_cache[inputs] = theano.function(inputs, self)
523 args = [inputs_to_values[param] for param in inputs]
524
~/miniconda3/envs/dev3/lib/python3.8/site-packages/theano/compile/function.py in function(inputs, outputs, mode, updates, givens, no_default_updates, accept_inplace, name, rebuild_strict, allow_input_downcast, profile, on_unused_input)
304 # note: pfunc will also call orig_function -- orig_function is
305 # a choke point that all compilation must pass through
--> 306 fn = pfunc(params=inputs,
307 outputs=outputs,
308 mode=mode,
~/miniconda3/envs/dev3/lib/python3.8/site-packages/theano/compile/pfunc.py in pfunc(params, outputs, mode, updates, givens, no_default_updates, accept_inplace, name, rebuild_strict, allow_input_downcast, profile, on_unused_input, output_keys)
481 inputs.append(si)
482
--> 483 return orig_function(inputs, cloned_outputs, mode,
484 accept_inplace=accept_inplace, name=name,
485 profile=profile, on_unused_input=on_unused_input,
~/miniconda3/envs/dev3/lib/python3.8/site-packages/theano/compile/function_module.py in orig_function(inputs, outputs, mode, accept_inplace, name, profile, on_unused_input, output_keys)
1830 try:
1831 Maker = getattr(mode, 'function_maker', FunctionMaker)
-> 1832 m = Maker(inputs,
1833 outputs,
1834 mode,
~/miniconda3/envs/dev3/lib/python3.8/site-packages/theano/compile/function_module.py in __init__(self, inputs, outputs, mode, accept_inplace, function_builder, profile, on_unused_input, fgraph, output_keys, name)
1484 # make the fgraph (copies the graph, creates NEW INPUT AND
1485 # OUTPUT VARIABLES)
-> 1486 fgraph, additional_outputs = std_fgraph(inputs, outputs,
1487 accept_inplace)
1488 fgraph.profile = profile
~/miniconda3/envs/dev3/lib/python3.8/site-packages/theano/compile/function_module.py in std_fgraph(input_specs, output_specs, accept_inplace)
178 orig_outputs = [spec.variable for spec in output_specs] + updates
179
--> 180 fgraph = gof.fg.FunctionGraph(orig_inputs, orig_outputs,
181 update_mapping=update_mapping)
182
~/miniconda3/envs/dev3/lib/python3.8/site-packages/theano/gof/fg.py in __init__(self, inputs, outputs, features, clone, update_mapping)
173
174 for output in outputs:
--> 175 self.__import_r__(output, reason="init")
176 for i, output in enumerate(outputs):
177 output.clients.append(('output', i))
~/miniconda3/envs/dev3/lib/python3.8/site-packages/theano/gof/fg.py in __import_r__(self, variable, reason)
344 # Imports the owners of the variables
345 if variable.owner and variable.owner not in self.apply_nodes:
--> 346 self.__import__(variable.owner, reason=reason)
347 elif (variable.owner is None and
348 not isinstance(variable, graph.Constant) and
~/miniconda3/envs/dev3/lib/python3.8/site-packages/theano/gof/fg.py in __import__(self, apply_node, check, reason)
389 "for more information on this error."
390 % (node.inputs.index(r), str(node)))
--> 391 raise MissingInputError(error_msg, variable=r)
392
393 for node in new_nodes:
MissingInputError: Input 0 of the graph (indices start from 0), used to compute sigmoid(c_interval__), was not provided and not given a value. Use the Theano flag exception_verbosity='high', for more information on this error.