Hello, I installed pymc5 using conda-forge.
but I have suffering the error when importing pymc
The error is :
UnicodeDecodeError: ‘cp949’ codec can’t decode byte 0xe2 in position 2365: illegal multibyte sequence
Please help me…
Hello, I installed pymc5 using conda-forge.
but I have suffering the error when importing pymc
The error is :
UnicodeDecodeError: ‘cp949’ codec can’t decode byte 0xe2 in position 2365: illegal multibyte sequence
Please help me…
Can you past the entire error message and trace?
UnicodeDecodeError Traceback (most recent call last)
Cell In[1], line 1
----> 1 import pymc as pm
2 import numpy as np
4 # Example data
File ~\anaconda3\envs\BayesianBox\Lib\site-packages\pymc\__init__.py:49
44 pytensor.config.gcc__cxxflags = augmented
47 __set_compiler_flags()
---> 49 from pymc import _version, gp, ode, sampling
50 from pymc.backends import *
51 from pymc.blocking import *
File ~\anaconda3\envs\BayesianBox\Lib\site-packages\pymc\gp\__init__.py:15
1 # Copyright 2023 The PyMC Developers
2 #
3 # Licensed under the Apache License, Version 2.0 (the "License");
(...)
12 # See the License for the specific language governing permissions and
13 # limitations under the License.
---> 15 from pymc.gp import cov, mean, util
16 from pymc.gp.gp import (
17 TP,
18 Latent,
(...)
23 MarginalSparse,
24 )
25 from pymc.gp.hsgp_approx import HSGP
File ~\anaconda3\envs\BayesianBox\Lib\site-packages\pymc\gp\util.py:30
27 from scipy.cluster.vq import kmeans
29 # Avoid circular dependency when importing modelcontext
---> 30 from pymc.distributions.distribution import Distribution
31 from pymc.model import modelcontext
32 from pymc.pytensorf import compile_pymc, walk_model
File ~\anaconda3\envs\BayesianBox\Lib\site-packages\pymc\distributions\__init__.py:15
1 # Copyright 2023 The PyMC Developers
2 #
3 # Licensed under the Apache License, Version 2.0 (the "License");
(...)
12 # See the License for the specific language governing permissions and
13 # limitations under the License.
---> 15 from pymc.distributions.bound import Bound
16 from pymc.distributions.censored import Censored
17 from pymc.distributions.continuous import (
18 AsymmetricLaplace,
19 Beta,
(...)
51 Weibull,
52 )
File ~\anaconda3\envs\BayesianBox\Lib\site-packages\pymc\distributions\bound.py:23
20 from pytensor.tensor.random.op import RandomVariable
21 from pytensor.tensor.var import TensorVariable
---> 23 from pymc.distributions.continuous import BoundedContinuous, bounded_cont_transform
24 from pymc.distributions.dist_math import check_parameters
25 from pymc.distributions.distribution import Continuous, Discrete
File ~\anaconda3\envs\BayesianBox\Lib\site-packages\pymc\distributions\continuous.py:59
56 from pytensor.tensor.random.op import RandomVariable
57 from pytensor.tensor.var import TensorConstant
---> 59 from pymc.logprob.abstract import _logcdf_helper, _logprob_helper
60 from pymc.logprob.basic import icdf
62 try:
File ~\anaconda3\envs\BayesianBox\Lib\site-packages\pymc\logprob\__init__.py:37
1 # Copyright 2023 The PyMC Developers
2 #
3 # Licensed under the Apache License, Version 2.0 (the "License");
(...)
34 # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 # SOFTWARE.
---> 37 from pymc.logprob.basic import (
38 conditional_logp,
39 icdf,
40 logcdf,
41 logp,
42 transformed_conditional_logp,
43 )
45 # isort: off
46 # Add rewrites to the DBs
47 import pymc.logprob.binary
File ~\anaconda3\envs\BayesianBox\Lib\site-packages\pymc\logprob\basic.py:65
56 from typing_extensions import TypeAlias
58 from pymc.logprob.abstract import (
59 MeasurableVariable,
60 _icdf_helper,
(...)
63 _logprob_helper,
64 )
---> 65 from pymc.logprob.rewriting import cleanup_ir, construct_ir_fgraph
66 from pymc.logprob.transforms import RVTransform, TransformValuesRewrite
67 from pymc.logprob.utils import find_rvs_in_graph, rvs_to_value_vars
File ~\anaconda3\envs\BayesianBox\Lib\site-packages\pymc\logprob\rewriting.py:84
81 from pytensor.tensor.var import TensorVariable
83 from pymc.logprob.abstract import MeasurableVariable
---> 84 from pymc.logprob.utils import DiracDelta, indices_from_subtensor
86 inc_subtensor_ops = (IncSubtensor, AdvancedIncSubtensor, AdvancedIncSubtensor1)
87 subtensor_ops = (AdvancedSubtensor, AdvancedSubtensor1, Subtensor)
File ~\anaconda3\envs\BayesianBox\Lib\site-packages\pymc\logprob\utils.py:67
64 from pytensor.tensor.var import TensorVariable
66 from pymc.logprob.abstract import MeasurableVariable, _logprob
---> 67 from pymc.util import makeiter
70 def walk_model(
71 graphs: Iterable[TensorVariable],
72 walk_past_rvs: bool = False,
73 stop_at_vars: Optional[Set[TensorVariable]] = None,
74 expand_fn: Callable[[TensorVariable], List[TensorVariable]] = lambda var: [],
75 ) -> Generator[TensorVariable, None, None]:
76 """Walk model graphs and yield their nodes.
77
78 By default, these walks will not go past ``MeasurableVariable`` nodes.
(...)
89 A function that returns the next variable(s) to be traversed.
90 """
File ~\anaconda3\envs\BayesianBox\Lib\site-packages\pymc\util.py:20
16 import warnings
18 from typing import Any, Dict, List, Optional, Sequence, Tuple, Union, cast
---> 20 import arviz
21 import cloudpickle
22 import numpy as np
File ~\anaconda3\envs\BayesianBox\Lib\site-packages\arviz\__init__.py:33
27 super()._log(level, msg, *args, **kwargs)
30 _log = Logger("arviz")
---> 33 from .data import *
34 from .plots import *
35 from .plots.backends import *
File ~\anaconda3\envs\BayesianBox\Lib\site-packages\arviz\data\__init__.py:2
1 """Code for loading and manipulating data structures."""
----> 2 from .base import CoordSpec, DimSpec, dict_to_dataset, numpy_to_data_array
3 from .converters import convert_to_dataset, convert_to_inference_data
4 from .datasets import clear_data_home, list_datasets, load_arviz_data
File ~\anaconda3\envs\BayesianBox\Lib\site-packages\arviz\data\base.py:20
15 except ImportError:
16 # mypy struggles with conditional imports expressed as catching ImportError:
17 # https://github.com/python/mypy/issues/1153
18 import json # type: ignore
---> 20 from .. import __version__, utils
21 from ..rcparams import rcParams
23 CoordSpec = Dict[str, List[Any]]
File ~\anaconda3\envs\BayesianBox\Lib\site-packages\arviz\utils.py:667
658 """Lazily load the resource files into memory the first time they are needed.
659
660 Clone from xarray.core.formatted_html_template.
661 """
662 return [
663 importlib.resources.files("arviz").joinpath(fname).read_text() for fname in STATIC_FILES
664 ]
--> 667 class HtmlTemplate:
668 """Contain html templates for InferenceData repr."""
670 html_template = """
671 <div>
672 <div class='xr-header'>
(...)
678 </div>
679 """
File ~\anaconda3\envs\BayesianBox\Lib\site-packages\arviz\utils.py:692, in HtmlTemplate()
670 html_template = """
671 <div>
672 <div class='xr-header'>
(...)
678 </div>
679 """
680 element_template = """
681 <li class = "xr-section-item">
682 <input id="idata_{group_id}" class="xr-section-summary-in" type="checkbox">
(...)
690 </li>
691 """
--> 692 _, css_style = _load_static_files() # pylint: disable=protected-access
693 specific_style = ".xr-wrap{width:700px!important;}"
694 css_template = f"<style> {css_style}{specific_style} </style>"
File ~\anaconda3\envs\BayesianBox\Lib\site-packages\arviz\utils.py:662, in _load_static_files()
656 @lru_cache(None)
657 def _load_static_files():
658 """Lazily load the resource files into memory the first time they are needed.
659
660 Clone from xarray.core.formatted_html_template.
661 """
--> 662 return [
663 importlib.resources.files("arviz").joinpath(fname).read_text() for fname in STATIC_FILES
664 ]
File ~\anaconda3\envs\BayesianBox\Lib\site-packages\arviz\utils.py:663, in <listcomp>(.0)
656 @lru_cache(None)
657 def _load_static_files():
658 """Lazily load the resource files into memory the first time they are needed.
659
660 Clone from xarray.core.formatted_html_template.
661 """
662 return [
--> 663 importlib.resources.files("arviz").joinpath(fname).read_text() for fname in STATIC_FILES
664 ]
File ~\anaconda3\envs\BayesianBox\Lib\pathlib.py:1059, in Path.read_text(self, encoding, errors)
1057 encoding = io.text_encoding(encoding)
1058 with self.open(mode='r', encoding=encoding, errors=errors) as f:
-> 1059 return f.read()
UnicodeDecodeError: 'cp949' codec can't decode byte 0xe2 in position 2365: illegal multibyte sequence
Seems like an arviz problem. Any clue @OriolAbril ? Did you install via the instructions found here?
Have you installed everything via conda forge? If so, are you able to import arviz alone directly? And xarray?
That is, run first import arviz
if it doesn’t work, import xarray
.
If neither work. Could you try installing only xarray first, see if you can import it, then arviz also see if importable?
I changed encoding option of pathlib.py and configparser.py in virtual environment!
It works well.
the same problem. could you tell me how to change the encoding option?
If you run the pymc code with inadequacy installation, you can find error in pathlib.py and configparser.py.
In my case, I changed encoding=‘utf-8’.
Yes, it’s solved after changing to ‘utf-8’, thanks a lot.