Hi!

I am trying to implement a model with a Multivariate Normal likelihood and I am estimating the covariance matrix using the LKJCholeskyCov prior. However, I would like to define a different distribution for each one of the standard deviations. I read in the documentation that the `sd_dist`

parameter must be a positive scalar or vector distribution for the standard deviations. So, I am defining a different distribution for each one and I am combining them using `at.stack`

.

Here is the code:

```
with pm.Model() as model:
sigmas_dists= [ pm.InverseGamma.dist(alpha= 40, beta=80), pm.InverseGamma.dist(alpha= 100, beta=500) ]
stds = at.stack( sigmas_dists )
packed_L = pm.LKJCholeskyCov('packed_L', n=2, eta=2., sd_dist= stds , compute_corr=False)
L = pm.expand_packed_triangular(2, packed_L)
cov = L.dot(L.T)
...
```

But I am getting the following error

```
TypeError: sd_dist must be a scalar or vector distribution variable
```

What am I doing wrong?

Thank you in advance!