Hi folks,
I’m trying to fit this model:
K = 20 # the number of components
mu = np.array([xm,ym])
def stick_breaking(v):
return v * tt.concatenate([tt.ones_like(v[..., :1]),
tt.extra_ops.cumprod(1 - v, axis=1)[..., :-1]],
axis=1)
with pm.Model() as model:
sigma_1 = pm.HalfNormal('simga_1', 5, shape=(K))
sigma_2 = pm.HalfNormal('sigma_2', 5, shape=(K))
rho = pm.Uniform('rho', -1, 1, shape=(K))
alpha = pm.Gamma('alpha', 1., 1.)
beta = pm.Beta('beta', 1., alpha, shape=(1, K))
w = pm.Deterministic('w', stick_breaking(beta))
w = w/w.sum()
compdist = []
for i in range(K):
cov = pm.math.stack(([sigma_1[i]**2, sigma_1[i]*sigma_2[i]*rho[i]],\
[sigma_1[i]*sigma_2[i]*rho[i], sigma_2[i]**2]))
compdist.append(pm.MvNormal.dist(mu=mu, cov=cov))
obs = pm.Mixture('obs', w, compdist, observed=vals)
but when I start to sampling, I’m getting:
“MissingInputError: Input 0 of the graph (indices start from 0), used to compute Elemwise{exp,no_inplace}(alpha_log__), was not provided and not given a value. Use the Theano flag exception_verbosity=‘high’, for more information on this error.”
Can someone help me? Thank you very much!