Hi!

I am doing a simple inference problem in which i have the following model:

```
with pm.Model() as model:
prior_mu = pm.Normal('prior_mu', mu=mu)
prior_std = pm.Normal('prior_std', mu=std)
prior = pm.Normal('prior',prior_mu,prior_std)
pm.Normal('Likelihood', mu=prior, observed=pieces)
```

where pieces is a signal that is sometimes turned off, and other times has a value quite far from zero. See figure below

The prior mu and sd are the expected value if the pieces-input was constant. After infering this, i get an extremely narrow posterior. Shouldnt the posterior distribution be rather wide as the observed values vary so much?

see figure of the inferred, extremely narrow posterior below.