When using the prior_from_idata experimental feature as illustrated in the sample docs here, I get an error “numpy.linalg.LinAlgError: 0-dimensional array given. Array must be at least two-dimensional”
Here is a super-simple code:
with pymc.Model(coords=dict(test=range(4), options=range(3))) as model1:
a = pymc.Normal("a")
trace = pymc.sample(progressbar=False)
with pymc.Model(coords=dict(test=range(4), options=range(3))) as model2:
priors = pymc_experimental.prior_from_idata(trace, var_names=["a"])
trace1 = pymc.sample_prior_predictive(100)
The error occurs in the chol decomposition in _mean_chol() See the source file here
What am i missing from the documentation?
I tried passing in an explicit shape parameter i.e. pymc.Normal(“a”, shape=1) and …var_names=[“a”], a=dict(shape=1)) but that didn’t help.
An example with explicit chain arguments and shape would help. TIA.