Properly sampling mixture models

So I am attempting to use the mixture class via:

with pm.Model() as Model:
    
    y = theano.shared(X_)
    NumberOfData = g.shape[1]
    #Create a covariance matrix for each potential cluster which relates all features of our data
    Lower = tt.stack([pm.LKJCholeskyCov('Sigma_{}'.format(k), n=NumberOfFeatures, eta=2., 
                                        sd_dist=pm.HalfNormal.dist(sd = 1.)) for k in range(NumberOfClusters)])
    Chol = tt.stack([pm.expand_packed_triangular(NumberOfFeatures, Lower[k]) for k in range(NumberOfClusters)])

    #The center of each cluster
    Mus = tt.stack([pm.Uniform('Mu_{}'.format(k), lower = 0., upper = 1., shape=NumberOfFeatures) for k in range(NumberOfClusters)])

    #Create the multivariate normal distribution for each cluster
    MultivariateNormals = [pm.MvNormal.dist(Mus[k], chol=Chol[k], shape = NumberOfFeatures) for k in range(NumberOfClusters)]

    #Create the weights for each cluster which measures how much impact they have 
    Weights = pm.Dirichlet('w', np.ones(NumberOfClusters)/NumberOfClusters)
      
    #Due to software bugs, we create a log likelihood by hand
    #logpcomp = tt.stack([Dist.logp(theano.shared(y)) for Dist in MultivariateNormals], axis=1)
    #Prob = pm.Deterministic("Probabilities", logpcomp)
    
    Prob = pm.Mixture("prob", w=Weights, comp_dists=MultivariateNormals, shape = NumberOfDataPoints, observed = y)

but I am receiving

/anaconda3/lib/python3.6/site-packages/six.py in reraise(tp, value, tb)
    691             if value.__traceback__ is not tb:
    692                 raise value.with_traceback(tb)
--> 693             raise value
    694         finally:
    695             value = None

ValueError: Input dimension mis-match. (input[0].shape[1] = 5, input[1].shape[1] = 1000)

where 5 is the number of clusters and 1000 is the number of data points. Thank you so much for your help!