PyMC model on large datasets

Hi! I’m trying to train a model very similar to what @AlexAndorra described in his blog post when he modeled latent presidential popularity across time using a random walk. The model definition is described below. However, the training set train_df has around 27 million rows and even trying to do pm.sample_prior_predictive() fails. Are there any approaches that I should consider? In a previous question, @ckrapu mentioned that he:

Not sure if this is a viable option or if there are any other references out there on how to handle large datasets.

with pm.Model(coords=COORDS) as hierarchical_model:

    baseline = pm.Normal("baseline", mu=1, sigma=0.9)
    artifact_effect = pm.Normal("artifact_effect", sigma=0.15, dims="artifact")
    region_effect = pm.Normal("region_effect", sigma=0.15, dims="region")
    holiday_effect = pm.Normal("holiday_effect", sigma=0.15, dims=("region", "holiday"))
    dow_effect = pm.Normal("dow_effect", sigma=0.15, dims=("region", "dow"))
    woy_effect = pm.Normal("woy_effect", sigma=0.15, dims=("region", "woy"))    
    # need the cumsum parametrization to properly control the init of the GRW
    region_rw_init = pt.zeros(shape=(len(COORDS["artifact"]), len(COORDS["region"]), 1))
    region_drifts = pm.Normal(
        dims=("artifact", "region", "week_origin"),
    region_rw_innovations = pm.Normal(
        dims=("artifact", "region", "week_minus_origin"),
    region_rw_raw = pm.Deterministic(
        pt.cumsum(pt.concatenate([region_rw_init, region_drifts + region_rw_innovations], axis=-1), axis=-1), 
        dims=("artifact", "region", "week")
    region_sd = pm.HalfNormal("region_shrinkage_pop", 0.1)
    artifact_region_week_effect = pm.Deterministic(
        region_rw_raw * region_sd, 
        dims=("artifact", "region", "week")

    expected_qty = pm.math.exp(
        + artifact_effect[artifact_id]
        + region_effect[region_id]
        + holiday_effect[region_id, holiday_id]
        + dow_effect[region_id, dow_id]
        + woy_effect[region_id, woy_id]
        + artifact_region_week_effect[artifact_id, region_id, week_id]
    α = pm.Exponential("alpha", 10)
    # Negative Binomial likelihood
    qty = pm.NegativeBinomial("qty", mu=expected_qty, alpha=α, observed=train_df.qty.values, dims='observation')