I recently started doing probabilistic programming using PyMC3. In my scenario, I have 3 random variables: On, Triangle, and X, such that X depends on Triangle and On. Triangle and On both follow Bernoulli distributions, and depending on which value they take, the value of X, which follows a Normal, changes.
I wrote up some mock code to test this concept but it doesn’t work. I just started working in this framework, and I know there are potentially many things wrong with this code, but I’m posting this here so you can see what I’ve done.
with pymc3.Model() as model:
on = pymc3.distributions.discrete.Bernoulli('on', p=.7)
x_on = pymc3.distributions.continuous.Normal('x_on', 10, .4)
pTriangle_given_on = 1
pTriangle_given_not_on = .7
pTriangle = pymc3.math.switch(on, pTriangle_given_on, pTriangle_given_not_on)
triangle = pymc3.distributions.discrete.Bernoulli('triangle', p=pTriangle)
name = None
x_triangle = None
if triangle:
name = pymc3.distributions.discrete.Categorical('name', p=[.3, .2, .1, .1, .2, .1])
else:
name = pymc3.distributions.discrete.Categorical('name', p=[.1, .5, .4])
if on:
x_triangle = pymc3.Deterministic('x_triangle', x_on)
elif triangle:
x_triangle = pymc3.Normal('x_triangle', 5, 1)
else:
x_triangle = numpy.nan
trace = pymc3.sample()
pymc3.plot_posterior(trace)
I’m not sure how to specify the conditional dependence of X on Triangle and On. Any thoughts from you all would be much appreciated.