hi! thank you for getting back to me.
full error trace below:
Traceback (most recent call last):
File "/home/bjorhart/miniconda3/envs/m_s_5/lib/python3.9/site-packages/pymc3/distributions/distribution.py", line 801, in _draw_value
return dist_tmp.random(point=point, size=size)
File "/home/bjorhart/miniconda3/envs/m_s_5/lib/python3.9/site-packages/pymc3/distributions/continuous.py", line 494, in random
mu, t au, _ = draw_values([self.mu, self.tau, self.sigma],
File "/home/bjorhart/miniconda3/envs/m_s_5/lib/python3.9/site-packages/pymc3/distributions/distribution.py", line 661, in draw_values
value = _draw_value(param,
File "/home/bjorhart/miniconda3/envs/m_s_5/lib/python3.9/site-packages/pymc3/distributions/distribution.py", line 842, in _draw_value
output = func(*input_vals)
File "/home/bjorhart/miniconda3/envs/m_s_5/lib/python3.9/site-packages/numpy/lib/function_base.py", line 2108, in __call__
return self._vectorize_call(func=func, args=vargs)
File "/home/bjorhart/miniconda3/envs/m_s_5/lib/python3.9/site-packages/numpy/lib/function_base.py", line 2182, in _vectorize_call
res = self._vectorize_call_with_signature(func, args)
File "/home/bjorhart/miniconda3/envs/m_s_5/lib/python3.9/site-packages/numpy/lib/function_base.py", line 2223, in _vectorize_call_with_signature
results = func(*(arg[index] for arg in args))
File "/home/bjorhart/miniconda3/envs/m_s_5/lib/python3.9/site-packages/theano/compile/function_module.py", line 811, in __call__
s.storage[0] = s.type.filter(
File "/home/bjorhart/miniconda3/envs/m_s_5/lib/python3.9/site-packages/theano/tensor/type.py", line 194, in filter
raise TypeError("Non-unit value on shape on a broadcastable"
TypeError: ('Bad input argument to theano function with name "/home/bjorhart/miniconda3/envs/m_s_5/lib/python3.9/site-packages/pymc3/distributions/distribution.py:692" at index 0 (0-based). ', 'Non-unit value on shape on a broadcastable dimension.', (500,), (True,))
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "/home/bjorhart/miniconda3/envs/m_s_5/lib/python3.9/site-packages/pymc3/sampling.py", line 1495, in sample_prior_predictive
values = draw_values([model[name] for name in names], size=samples)
File "/home/bjorhart/miniconda3/envs/m_s_5/lib/python3.9/site-packages/pymc3/distributions/distribution.py", line 617, in draw_values
value = _draw_value(next_,
File "/home/bjorhart/miniconda3/envs/m_s_5/lib/python3.9/site-packages/pymc3/distributions/distribution.py", line 809, in _draw_value
val = np.atleast_1d(dist_tmp.random(point=point,
File "/home/bjorhart/miniconda3/envs/m_s_5/lib/python3.9/site-packages/pymc3/distributions/continuous.py", line 494, in random
mu, tau, _ = draw_values([self.mu, self.tau, self.sigma],
File "/home/bjorhart/miniconda3/envs/m_s_5/lib/python3.9/site-packages/pymc3/distributions/distribution.py", line 661, in draw_values
value = _draw_value(param,
File "/home/bjorhart/miniconda3/envs/m_s_5/lib/python3.9/site-packages/pymc3/distributions/distribution.py", line 842, in _draw_value
output = func(*input_vals)
File "/home/bjorhart/miniconda3/envs/m_s_5/lib/python3.9/site-packages/numpy/lib/function_base.py", line 2108, in __call__
return self._vectorize_call(func=func, args=vargs)
File "/home/bjorhart/miniconda3/envs/m_s_5/lib/python3.9/site-packages/numpy/lib/function_base.py", line 2182, in _vectorize_call
res = self._vectorize_call_with_signature(func, args)
File "/home/bjorhart/miniconda3/envs/m_s_5/lib/python3.9/site-packages/numpy/lib/function_base.py", line 2211, in _vectorize_call_with_signature
broadcast_shape, dim_sizes = _parse_input_dimensions(
File "/home/bjorhart/miniconda3/envs/m_s_5/lib/python3.9/site-packages/numpy/lib/function_base.py", line 1873, in _parse_input_dimensions
_update_dim_sizes(dim_sizes, arg, core_dims)
File "/home/bjorhart/miniconda3/envs/m_s_5/lib/python3.9/site-packages/numpy/lib/function_base.py", line 1836, in _update_dim_sizes
raise ValueError(
ValueError: 0-dimensional argument does not have enough dimensions for all core dimensions ('i_0_0',)