Greetings!
I’m having issues with sampling. I have a lot of predictors (~150+). Here’s my code with fake data:
fake_data = pd.DataFrame(np.random.poisson(size=(1000,150)))
fake_data.columns = [ 'col_' + str(i) for i in range(150) ]
with pm.Model() as model:
summation = 0
for predictor in fake_data.columns[:-1]:
summation += pm.Normal(name=predictor, mu=0, sd=2) * fake_data[predictor].astype(float)
pm.Poisson(
name='course_topic_interest_culture_count',
mu=np.exp(summation),
observed=fake_data['col_149']
)
traces['col_149'] = pm.sample()
Here’s the error that I got:
INFO (theano.gof.compilelock): Refreshing lock /Users/eddericugaddan/.theano/compiledir_Darwin-18.2.0-x86_64-i386-64bit-i386-3.6.0-64/lock_dir/lock
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
INFO (theano.gof.compilelock): Refreshing lock /Users/eddericugaddan/.theano/compiledir_Darwin-18.2.0-x86_64-i386-64bit-i386-3.6.0-64/lock_dir/lock
You can find the C code in this temporary file: /var/folders/_t/k13fpkjx41z2qd6ws3ry4tn00000gn/T/theano_compilation_error_hcy9krlp
---------------------------------------------------------------------------
Exception Traceback (most recent call last)
<ipython-input-106-6190dd043682> in <module>()
10 )
11
---> 12 traces['col_149'] = pm.sample()
~/anaconda3/lib/python3.6/site-packages/pymc3/sampling.py in sample(draws, step, init, n_init, start, trace, chain_idx, chains, cores, tune, nuts_kwargs, step_kwargs, progressbar, model, random_seed, live_plot, discard_tuned_samples, live_plot_kwargs, compute_convergence_checks, use_mmap, **kwargs)
403 start_, step = init_nuts(init=init, chains=chains, n_init=n_init,
404 model=model, random_seed=random_seed,
--> 405 progressbar=progressbar, **args)
406 if start is None:
407 start = start_
~/anaconda3/lib/python3.6/site-packages/pymc3/sampling.py in init_nuts(init, chains, n_init, model, random_seed, progressbar, **kwargs)
1504 'Unknown initializer: {}.'.format(init))
1505
-> 1506 step = pm.NUTS(potential=potential, model=model, **kwargs)
1507
1508 return start, step
~/anaconda3/lib/python3.6/site-packages/pymc3/step_methods/hmc/nuts.py in __init__(self, vars, max_treedepth, early_max_treedepth, **kwargs)
150 `pm.sample` to the desired number of tuning steps.
151 """
--> 152 super(NUTS, self).__init__(vars, **kwargs)
153
154 self.max_treedepth = max_treedepth
~/anaconda3/lib/python3.6/site-packages/pymc3/step_methods/hmc/base_hmc.py in __init__(self, vars, scaling, step_scale, is_cov, model, blocked, potential, integrator, dtype, Emax, target_accept, gamma, k, t0, adapt_step_size, step_rand, **theano_kwargs)
61
62 super(BaseHMC, self).__init__(vars, blocked=blocked, model=model,
---> 63 dtype=dtype, **theano_kwargs)
64
65 self.adapt_step_size = adapt_step_size
~/anaconda3/lib/python3.6/site-packages/pymc3/step_methods/arraystep.py in __init__(self, vars, model, blocked, dtype, **theano_kwargs)
226
227 func = model.logp_dlogp_function(
--> 228 vars, dtype=dtype, **theano_kwargs)
229
230 # handle edge case discovered in #2948
~/anaconda3/lib/python3.6/site-packages/pymc3/model.py in logp_dlogp_function(self, grad_vars, **kwargs)
707 varnames = [var.name for var in grad_vars]
708 extra_vars = [var for var in self.free_RVs if var.name not in varnames]
--> 709 return ValueGradFunction(self.logpt, grad_vars, extra_vars, **kwargs)
710
711 @property
~/anaconda3/lib/python3.6/site-packages/pymc3/model.py in __init__(self, cost, grad_vars, extra_vars, dtype, casting, **kwargs)
446
447 self._theano_function = theano.function(
--> 448 inputs, [self._cost_joined, grad], givens=givens, **kwargs)
449
450 def set_extra_values(self, extra_vars):
~/anaconda3/lib/python3.6/site-packages/theano/compile/function.py in function(inputs, outputs, mode, updates, givens, no_default_updates, accept_inplace, name, rebuild_strict, allow_input_downcast, profile, on_unused_input)
315 on_unused_input=on_unused_input,
316 profile=profile,
--> 317 output_keys=output_keys)
318 return fn
~/anaconda3/lib/python3.6/site-packages/theano/compile/pfunc.py in pfunc(params, outputs, mode, updates, givens, no_default_updates, accept_inplace, name, rebuild_strict, allow_input_downcast, profile, on_unused_input, output_keys)
484 accept_inplace=accept_inplace, name=name,
485 profile=profile, on_unused_input=on_unused_input,
--> 486 output_keys=output_keys)
487
488
~/anaconda3/lib/python3.6/site-packages/theano/compile/function_module.py in orig_function(inputs, outputs, mode, accept_inplace, name, profile, on_unused_input, output_keys)
1839 name=name)
1840 with theano.change_flags(compute_test_value="off"):
-> 1841 fn = m.create(defaults)
1842 finally:
1843 t2 = time.time()
~/anaconda3/lib/python3.6/site-packages/theano/compile/function_module.py in create(self, input_storage, trustme, storage_map)
1713 theano.config.traceback.limit = theano.config.traceback.compile_limit
1714 _fn, _i, _o = self.linker.make_thunk(
-> 1715 input_storage=input_storage_lists, storage_map=storage_map)
1716 finally:
1717 theano.config.traceback.limit = limit_orig
~/anaconda3/lib/python3.6/site-packages/theano/gof/link.py in make_thunk(self, input_storage, output_storage, storage_map)
697 return self.make_all(input_storage=input_storage,
698 output_storage=output_storage,
--> 699 storage_map=storage_map)[:3]
700
701 def make_all(self, input_storage, output_storage):
~/anaconda3/lib/python3.6/site-packages/theano/gof/vm.py in make_all(self, profiler, input_storage, output_storage, storage_map)
1089 compute_map,
1090 [],
-> 1091 impl=impl))
1092 linker_make_thunk_time[node] = time.time() - thunk_start
1093 if not hasattr(thunks[-1], 'lazy'):
~/anaconda3/lib/python3.6/site-packages/theano/gof/op.py in make_thunk(self, node, storage_map, compute_map, no_recycling, impl)
953 try:
954 return self.make_c_thunk(node, storage_map, compute_map,
--> 955 no_recycling)
956 except (NotImplementedError, utils.MethodNotDefined):
957 # We requested the c code, so don't catch the error.
~/anaconda3/lib/python3.6/site-packages/theano/gof/op.py in make_c_thunk(self, node, storage_map, compute_map, no_recycling)
856 _logger.debug('Trying CLinker.make_thunk')
857 outputs = cl.make_thunk(input_storage=node_input_storage,
--> 858 output_storage=node_output_storage)
859 thunk, node_input_filters, node_output_filters = outputs
860
~/anaconda3/lib/python3.6/site-packages/theano/gof/cc.py in make_thunk(self, input_storage, output_storage, storage_map, keep_lock)
1215 cthunk, module, in_storage, out_storage, error_storage = self.__compile__(
1216 input_storage, output_storage, storage_map,
-> 1217 keep_lock=keep_lock)
1218
1219 res = _CThunk(cthunk, init_tasks, tasks, error_storage, module)
~/anaconda3/lib/python3.6/site-packages/theano/gof/cc.py in __compile__(self, input_storage, output_storage, storage_map, keep_lock)
1155 output_storage,
1156 storage_map,
-> 1157 keep_lock=keep_lock)
1158 return (thunk,
1159 module,
~/anaconda3/lib/python3.6/site-packages/theano/gof/cc.py in cthunk_factory(self, error_storage, in_storage, out_storage, storage_map, keep_lock)
1618 node.op.prepare_node(node, storage_map, None, 'c')
1619 module = get_module_cache().module_from_key(
-> 1620 key=key, lnk=self, keep_lock=keep_lock)
1621
1622 vars = self.inputs + self.outputs + self.orphans
~/anaconda3/lib/python3.6/site-packages/theano/gof/cmodule.py in module_from_key(self, key, lnk, keep_lock)
1179 try:
1180 location = dlimport_workdir(self.dirname)
-> 1181 module = lnk.compile_cmodule(location)
1182 name = module.__file__
1183 assert name.startswith(location)
~/anaconda3/lib/python3.6/site-packages/theano/gof/cc.py in compile_cmodule(self, location)
1521 lib_dirs=self.lib_dirs(),
1522 libs=libs,
-> 1523 preargs=preargs)
1524 except Exception as e:
1525 e.args += (str(self.fgraph),)
~/anaconda3/lib/python3.6/site-packages/theano/gof/cmodule.py in compile_str(module_name, src_code, location, include_dirs, lib_dirs, libs, preargs, py_module, hide_symbols)
2386 # difficult to read.
2387 raise Exception('Compilation failed (return status=%s): %s' %
-> 2388 (status, compile_stderr.replace('\n', '. ')))
2389 elif config.cmodule.compilation_warning and compile_stderr:
2390 # Print errors just below the command line.
Exception: ('The following error happened while compiling the node', Elemwise{Composite{exp(((i0 * i1) + (i2 * i3) + (i4 * i5) + (i6 * i7) + (i8 * i9) + (i10 * i11) + (i12 * i13) + (i14 * i15) + (i16 * i17) + (i18 * i19) + (i20 * i21) + (i22 * i23) + (i24 * i25) + (i26 * i27) + (i28 * i29) + (i30 * i31) + (i32 * i33) + (i34 * i35) + (i36 * i37) + (i38 * i39) + (i40 * i41) + (i42 * i43) + (i44 * i45) + (i46 * i47) + (i48 * i49) + (i50 * i51) + (i52 * i53) + (i54 * i55) + (i56 * i57) + (i58 * i59) + (i60 * i61) + (i62 * i63) + (i64 * i65) + (i66 * i67) + (i68 * i69) + (i70 * i71) + (i72 * i73) + (i74 * i75) + (i76 * i77) + (i78 * i79) + (i80 * i81) + (i82 * i83) + (i84 * i85) + (i86 * i87) + (i88 * i89) + (i90 * i91) + (i92 * i93) + (i94 * i95) + (i96 * i97) + (i98 * i99) + (i100 * i101) + (i102 * i103) + (i104 * i105) + (i106 * i107) + (i108 * i109) + (i110 * i111) + (i112 * i113) + (i114 * i115) + (i116 * i117) + (i118 * i119) + (i120 * i121) + (i122 * i123) + (i124 * i125) + (i126 * i127) + (i128 * i129) + (i130 * i131) + (i132 * i133) + (i134 * i135) + (i136 * i137) + (i138 * i139) + (i140 * i141) + (i142 * i143) + (i144 * i145) + (i146 * i147) + (i148 * i149) + (i150 * i151) + (i152 * i153) + (i154 * i155) + (i156 * i157) + (i158 * i159) + (i160 * i161) + (i162 * i163) + (i164 * i165) + (i166 * i167) + (i168 * i169) + (i170 * i171) + (i172 * i173) + (i174 * i175) + (i176 * i177) + (i178 * i179) + (i180 * i181) + (i182 * i183) + (i184 * i185) + (i186 * i187) + (i188 * i189) + (i190 * i191) + (i192 * i193) + (i194 * i195) + (i196 * i197) + (i198 * i199) + (i200 * i201) + (i202 * i203) + (i204 * i205) + (i206 * i207) + (i208 * i209) + (i210 * i211) + (i212 * i213) + (i214 * i215) + (i216 * i217) + (i218 * i219) + (i220 * i221) + (i222 * i223) + (i224 * i225) + (i226 * i227) + (i228 * i229) + (i230 * i231) + (i232 * i233) + (i234 * i235) + (i236 * i237) + (i238 * i239) + (i240 * i241) + (i242 * i243) + (i244 * i245) + (i246 * i247) + (i248 * i249) + (i250 * i251) + (i252 * i253) + (i254 * i255) + (i256 * i257) + (i258 * i259) + (i260 * i261) + (i262 * i263) + (i264 * i265) + (i266 * i267) + (i268 * i269) + (i270 * i271) + (i272 * i273) + (i274 * i275) + (i276 * i277) + (i278 * i279) + (i280 * i281) + (i282 * i283) + (i284 * i285) + (i286 * i287) + (i288 * i289) + (i290 * i291) + (i292 * i293) + (i294 * i295) + (i296 * i297)))}}(InplaceDimShuffle{x}.0, TensorConstant{[ 1. 1. ... 2. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 0. ... 1. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 2. 0. ... 3. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 1. ... 0. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 2. ... 0. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 2. ... 3. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 2. 2. ... 1. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 3. 1. ... 1. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 0. ... 5. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 1. ... 2. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 1. ... 3. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 2. ... 0. 2.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 2. ... 1. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 2. 1. ... 1. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 1. ... 1. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 0. ... 1. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 2. 0. ... 1. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 1. ... 0. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 1. ... 1. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 0. ... 2. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 2. ... 2. 2.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 3. ... 1. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 2. ... 1. 2.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 2. 1. ... 2. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 1. ... 1. 2.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 3. ... 1. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 3. 1. ... 1. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 0. ... 2. 2.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 1. ... 2. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 3. ... 0. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 2. ... 1. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 2. 1. ... 3. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 2. 0. ... 0. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 2. ... 1. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 2. 1. ... 1. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 0. ... 0. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 0. ... 1. 2.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 2. ... 1. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 2. 2. ... 0. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 0. ... 1. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 1. ... 2. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 3. 0. ... 0. 3.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 4. ... 2. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 0. ... 0. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 2. ... 1. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 0. ... 2. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 1. ... 1. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 0. ... 3. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 2. ... 0. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 2. ... 1. 2.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 0. ... 0. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 0. ... 0. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 2. 1. ... 3. 2.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 1. ... 0. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 0. ... 0. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 2. 3. ... 1. 2.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 2. ... 1. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 0. ... 2. 2.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 2. ... 1. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 0. ... 2. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 2. ... 0. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 1. ... 1. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 3. 0. ... 1. 2.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 2. ... 1. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 1. ... 1. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 1. ... 0. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 2. 1. ... 0. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 2. ... 0. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 3. 0. ... 2. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 1. ... 0. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 1. ... 0. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 1. ... 0. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 1. ... 0. 2.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 2. 1. ... 1. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 1. ... 0. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 0. ... 1. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 2. ... 0. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 1. ... 0. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 3. 1. ... 0. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 1. ... 1. 2.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 1. ... 2. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 3. ... 0. 4.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 2. 1. ... 0. 2.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 1. ... 2. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 1. ... 1. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 3. ... 2. 3.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 3. ... 1. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 2. ... 0. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 3. 3. ... 2. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 0. ... 1. 3.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 1. ... 4. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 2. ... 2. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 2. 2. ... 4. 3.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 3. ... 1. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 4. 2. ... 0. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 2. 2. ... 1. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 1. ... 2. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 1. ... 2. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 2. 1. ... 3. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 3. 0. ... 0. 4.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 1. ... 0. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 0. ... 1. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 1. ... 2. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 2. ... 4. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 0. ... 0. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 1. ... 1. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 2. 1. ... 4. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 2. ... 0. 4.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 2. ... 1. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 2. ... 1. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 4. ... 2. 2.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 2. 1. ... 0. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 2. 2. ... 0. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 0. ... 1. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 1. ... 1. 2.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 1. ... 0. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 2. 1. ... 1. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 4. 0. ... 2. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 0. ... 1. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 3. ... 0. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 1. ... 0. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 5. ... 1. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 0. ... 0. 3.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 0. ... 0. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 1. ... 2. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 3. ... 2. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 1. ... 0. 2.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 1. ... 1. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 2. ... 2. 2.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 1. ... 1. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 1. ... 1. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 3. 1. ... 0. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 0. ... 4. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 1. ... 0. 3.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 1. ... 0. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 1. ... 2. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 3. ... 0. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 2. ... 0. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 1. ... 0. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 2. 0. ... 2. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 1. ... 1. 2.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 0. ... 2. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 2. 0. ... 2. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 2. ... 1. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 2. ... 1. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 3. ... 2. 1.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 1. 2. ... 0. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 2. 1. ... 0. 0.]}, InplaceDimShuffle{x}.0, TensorConstant{[ 0. 0. ... 0. 1.]}), '\n', 'Compilation failed (return status=1): /Users/eddericugaddan/.theano/compiledir_Darwin-18.2.0-x86_64-i386-64bit-i386-3.6.0-64/tmpuxmwtlie/mod.cpp:25346:32: fatal error: bracket nesting level exceeded maximum of 256. if (!PyErr_Occurred()) {. ^. /Users/eddericugaddan/.theano/compiledir_Darwin-18.2.0-x86_64-i386-64bit-i386-3.6.0-64/tmpuxmwtlie/mod.cpp:25346:32: note: use -fbracket-depth=N to increase maximum nesting level. 1 error generated.. ', '[Elemwise{Composite{exp(((i0 * i1) + (i2 * i3) + (i4 * i5) + (i6 * i7) + (i8 * i9) + (i10 * i11) + (i12 * i13) + (i14 * i15) + (i16 * i17) + (i18 * i19) + (i20 * i21) + (i22 * i23) + (i24 * i25) + (i26 * i27) + (i28 * i29) + (i30 * i31) + (i32 * i33) + (i34 * i35) + (i36 * i37) + (i38 * i39) + (i40 * i41) + (i42 * i43) + (i44 * i45) + (i46 * i47) + (i48 * i49) + (i50 * i51) + (i52 * i53) + (i54 * i55) + (i56 * i57) + (i58 * i59) + (i60 * i61) + (i62 * i63) + (i64 * i65) + (i66 * i67) + (i68 * i69) + (i70 * i71) + (i72 * i73) + (i74 * i75) + (i76 * i77) + (i78 * i79) + (i80 * i81) + (i82 * i83) + (i84 * i85) + (i86 * i87) + (i88 * i89) + (i90 * i91) + (i92 * i93) + (i94 * i95) + (i96 * i97) + (i98 * i99) + (i100 * i101) + (i102 * i103) + (i104 * i105) + (i106 * i107) + (i108 * i109) + (i110 * i111) + (i112 * i113) + (i114 * i115) + (i116 * i117) + (i118 * i119) + (i120 * i121) + (i122 * i123) + (i124 * i125) + (i126 * i127) + (i128 * i129) + (i130 * i131) + (i132 * i133) + (i134 * i135) + (i136 * i137) + (i138 * i139) + (i140 * i141) + (i142 * i143) + (i144 * i145) + (i146 * i147) + (i148 * i149) + (i150 * i151) + (i152 * i153) + (i154 * i155) + (i156 * i157) + (i158 * i159) + (i160 * i161) + (i162 * i163) + (i164 * i165) + (i166 * i167) + (i168 * i169) + (i170 * i171) + (i172 * i173) + (i174 * i175) + (i176 * i177) + (i178 * i179) + (i180 * i181) + (i182 * i183) + (i184 * i185) + (i186 * i187) + (i188 * i189) + (i190 * i191) + (i192 * i193) + (i194 * i195) + (i196 * i197) + (i198 * i199) + (i200 * i201) + (i202 * i203) + (i204 * i205) + (i206 * i207) + (i208 * i209) + (i210 * i211) + (i212 * i213) + (i214 * i215) + (i216 * i217) + (i218 * i219) + (i220 * i221) + (i222 * i223) + (i224 * i225) + (i226 * i227) + (i228 * i229) + (i230 * i231) + (i232 * i233) + (i234 * i235) + (i236 * i237) + (i238 * i239) + (i240 * i241) + (i242 * i243) + (i244 * i245) + (i246 * i247) + (i248 * i249) + (i250 * i251) + (i252 * i253) + (i254 * i255) + (i256 * i257) + (i258 * i259) + (i260 * i261) + (i262 * i263) + (i264 * i265) + (i266 * i267) + (i268 * i269) + (i270 * i271) + (i272 * i273) + (i274 * i275) + (i276 * i277) + (i278 * i279) + (i280 * i281) + (i282 * i283) + (i284 * i285) + (i286 * i287) + (i288 * i289) + (i290 * i291) + (i292 * i293) + (i294 * i295) + (i296 * i297)))}}(<TensorType(float64, (True,))>, TensorConstant{[ 1. 1. ... 2. 1.]}, <TensorType(float64, (True,))>, TensorConstant{[ 0. 0. ... 1. 1.]}, <TensorType(float64, (True,))>, TensorConstant{[ 2. 0. ... 3. 1.]}, <TensorType(float64, (True,))>, TensorConstant{[ 1. 1. ... 0. 0.]}, <TensorType(float64, (True,))>, TensorConstant{[ 1. 2. ... 0. 1.]}, <TensorType(float64, (True,))>, TensorConstant{[ 1. 2. ... 3. 1.]}, <TensorType(float64, (True,))>, TensorConstant{[ 2. 2. ... 1. 1.]}, <TensorType(float64, (True,))>, TensorConstant{[ 3. 1. ... 1. 1.]},
...
I am able to make it work if I drop the number of predictors, but I wouldn’t want to for the sake of causal inference (i.e. satisfying the backdoor criterion, etc.). Do you think there’s a way around this? Thanks a lot!
Regards,
Edderic