# Setting up a multiple input multiple output regularized Bayesian regression

I have a model of the form x_{t+1}=A x_{t} (a dynamical system) and want to regress the coefficients of A \in \mathbb{R}^{n\times n} onto x_{t+1} \in \mathbb{R}^n given m data pairs (x_{t+1},x_{t}). For this task, I have yet to find an approach to implement Bayesian regression. Help getting started with this would be greatly appreciated.

On top of that task, I would like to add a regularizing term which penalizes the Frobenius norm of A (equivalently an L2 penalization on both the rows and columns of A).

Thanks in advance Here’s a model that should implement what you’re looking for. I would normally suggest using one of the timeseries distributions since you are describing a vector autoregressive order-1 system, but there are some rough points in dealing with shapes there.

import numpy as np
import pymc3 as pm
import theano.tensor as tt

def frobenius_norm(X):
return tt.sum(tt.nlinalg.trace(A@A.T))**0.5

# Create simulated data via forward evolution of system
K        = 3
T        = 20
error_sd_true = 0.5

A_true = np.random.randn(K,K)

x  = np.zeros([T, K])
x = np.random.randn(K)

for t in range(1, T):
jump = np.random.randn(K)
x[t] = A_true@x[t-1] + jump*error_sd_true

penalty_weight = 0.1

with pm.Model():

A_scale  = pm.HalfCauchy('A_scale',  beta=1)
A            = pm.Normal('A', sd=A_scale, shape=[K,K])
error_sd = pm.HalfCauchy('error_sd', beta=1)

# We regress the shifted observations on the earlier observations
# with the regression weights provided by A. Note that the right-multiplication
# with A is only because of the shape we set up earlier for x.
pm.Normal('x_end', mu=x[0:-1]@A, observed=x[1:], sd=error_sd)
pm.Potential('A_penalty', frobenius_norm(A) * penalty_weight)

trace = pm.sample()


Now, you may want to play around with the choice of prior for A. Right now, there are two sources of regularization - one from the pm.Normal prior placed on its entries (essentially an element-wise L2 loss) and the Frobenius norm calculated using the trace of A. I also tried out a version omitting the pm.Normal prior and instead replacing it with pm.Flat which applies no prior. It works, but it just takes longer to sample because the problem is more poorly conditioned.

I appreciate the help with this! When running your script I get the following TypeError:

---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
/usr/local/lib/python3.8/site-packages/theano/tensor/type.py in dtype_specs(self)
264         try:
--> 265             return {
266                 "float16": (float, "npy_float16", "NPY_FLOAT16"),

KeyError: 'object'

During handling of the above exception, another exception occurred:

TypeError                                 Traceback (most recent call last)
<ipython-input-14-b744de5862b4> in <module>
28     # with A is only because of the shape we set up earlier for x.
29     pm.Normal('x_end', mu=x[0:-1]@A, observed=x[1:], sd=error_sd)
---> 30     pm.Potential('A_penalty', frobenius_norm(A) * penalty_weight)
31
32     trace = pm.sample()

<ipython-input-14-b744de5862b4> in frobenius_norm(X)
1 def frobenius_norm(X):
----> 2     return tt.sum(tt.nlinalg.trace(A@A.T))**0.5
3
4 # Create simulated data via forward evolution of system
5 K        = 3

/usr/local/lib/python3.8/site-packages/theano/tensor/nlinalg.py in trace(X)
232
233     """
--> 234     return extract_diag(X).sum()
235
236

/usr/local/lib/python3.8/site-packages/theano/graph/op.py in __call__(self, *inputs, **kwargs)
248         """
249         return_list = kwargs.pop("return_list", False)
--> 250         node = self.make_node(*inputs, **kwargs)
251
252         if config.compute_test_value != "off":

/usr/local/lib/python3.8/site-packages/theano/tensor/basic.py in make_node(self, x)
6563
6564     def make_node(self, x):
-> 6565         x = as_tensor_variable(x)
6566
6567         if x.ndim < 2:

/usr/local/lib/python3.8/site-packages/theano/tensor/basic.py in as_tensor_variable(x, name, ndim)
205         )
206
--> 207     return constant(x, name=name, ndim=ndim)
208
209

/usr/local/lib/python3.8/site-packages/theano/tensor/basic.py in constant(x, name, ndim, dtype)
253         assert x_.ndim == ndim
254
--> 255     ttype = TensorType(dtype=x_.dtype, broadcastable=[s == 1 for s in x_.shape])
256
257     try:

52         # True or False
---> 54         self.dtype_specs()  # error checking is done there
55         self.name = name
56         self.numpy_dtype = np.dtype(self.dtype)

/usr/local/lib/python3.8/site-packages/theano/tensor/type.py in dtype_specs(self)
280             }[self.dtype]
281         except KeyError:
--> 282             raise TypeError(
283                 f"Unsupported dtype for {self.__class__.__name__}: {self.dtype}"
284             )

TypeError: Unsupported dtype for TensorType: object


Would you be able to help with this error? It’s not something I have encountered prior.

Edit: I wanted to add that the error arises when calling frobenius_norm on the symbolic matrix A

Would you be able to share your PyMC and Theano versions with pm.version and theano.version? Mine was running on PyMC 3.11.4 and Theano 1.1.2. Also, I edited the example because for some random seeds, the data were not sufficiently informative to make the problem tractable.

I’m running Theano 1.1.2 and PyMC v4.0.0b2

I can try downgrading PyMC and see if that solves the problem.