I am playing around with a softmax regression. The sampling is very slow. Following the suggestion in the FAQ, I profiled the code and I realized that the softmax
function in Theano may be the bottleneck.
lass
---
<% time> <sum %> <apply time> <time per call> <type> <#call> <#apply> <Class name>
45.0% 45.0% 1.780s 2.19e-03s C 811 1 theano.tensor.nnet.nnet.Softmax
17.0% 62.0% 0.672s 8.28e-04s Py 811 1 theano.tensor.subtensor.AdvancedIncSubtensor
16.5% 78.6% 0.654s 1.47e-05s C 44605 55 theano.tensor.elemwise.Elemwise
6.1% 84.7% 0.241s 4.24e-05s C 5677 7 theano.tensor.blas.Dot22
4.4% 89.1% 0.174s 5.36e-05s C 3244 4 theano.tensor.blas.Dot22Scalar
2.4% 91.5% 0.096s 1.18e-04s C 811 1 theano.tensor.nnet.nnet.SoftmaxGrad
...
Do you have any tips on how to speed up the computation?