with pm.Model() as model_5_7:
a = pm.Normal(‘a’, mu=10, sd=100)
bn = pm.Normal(‘bn’, mu=0, sd=1, shape=2)
sigma = pm.Uniform(‘sigma’, lower=0, upper=1)
mu = pm.Deterministic(‘mu’, a + bn[0] * dcc[‘neocortex.perc’] + bn[1] * dcc[‘log_mass’])
kcal = pm.Normal(‘kcal’, mu=mu, sd=sigma, observed=dcc[‘kcal.per.g’])
trace_5_7 = pm.sample(1000, tune=1000)
[Auto-assigning NUTS sampler…
Initializing NUTS using jitter+adapt_diag…
Multiprocess sampling (2 chains in 2 jobs)
NUTS: [sigma, bn, a]
Sampling 2 chains: 100%|███████████████████████████████████████████████████████| 4000/4000 [00:20<00:00, 198.18draws/s]
There were 6 divergences after tuning. Increase target_accept
or reparameterize.
There was 1 divergence after tuning. Increase target_accept
or reparameterize.]
the result tell me " Increase target_accept
or reparameterize.",what shold I do in my model? thank you !