oh! now I see, thank you so much, it worked.
here is one more thing, i try to do the sampling, but it failed and says:
Some of the observed values of variable likelihood are associated with a non-finite logp:
here is the full error, it is a bit long:
point={'L_R_mu_interval__': array([0.]), 'L_R_sigma_interval__': array([0.]), 'mu_mean_base': array([0., 0.]), 'mu_sd_base_log__': array([0., 0.]), 'sigma_mean_base': array([0., 0.]), 'sigma_sd_base_log__': array([0., 0.]), 'mu_mean_delta': array([0., 0.]), 'mu_sd_delta_log__': array([0., 0.]), 'sigma_mean_delta': array([0., 0.]), 'sigma_sd_delta_log__': array([0., 0.]), 'ndt_mean': array([0., 0.]), 'ndt_sigma': array([0., 0.]), 'mu_i_base_pr': array([[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.]]), 'sigma_i_base_pr': array([[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.]]), 'mu_i_delta_pr': array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]), 'sigma_i_delta_pr': array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]), 'ndt_i_pr': array([[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.]])}
The variable likelihood has the following parameters:
0: [45120] [id A] <Vector(int64, shape=(1,))>
1: AdvancedSubtensor [id B] <Vector(float64, shape=(?,))>
ββ Join [id C] <Tensor3(float64, shape=(2, 47, 2))> 'mu'
β ββ 0 [id D] <Scalar(int8, shape=())>
β ββ Add [id E] <Tensor3(float64, shape=(1, 47, 2))>
β β ββ ExpandDims{axes=[0, 1]} [id F] <Tensor3(float64, shape=(1, 1, 2))>
β β β ββ mu_mean_base [id G] <Vector(float64, shape=(2,))>
β β ββ ExpandDims{axis=0} [id H] <Tensor3(float64, shape=(1, 47, 2))>
β β ββ Mul [id I] <Matrix(float64, shape=(47, 2))>
β β ββ Exp [id J] <Matrix(float64, shape=(1, 2))>
β β β ββ ExpandDims{axis=0} [id K] <Matrix(float64, shape=(1, 2))>
β β β ββ mu_sd_base_log__ [id L] <Vector(float64, shape=(2,))>
β β ββ mu_i_base_pr [id M] <Matrix(float64, shape=(47, 2))>
β ββ Add [id N] <Tensor3(float64, shape=(1, 47, 2))>
β ββ ExpandDims{axes=[0, 1]} [id O] <Tensor3(float64, shape=(1, 1, 2))>
β β ββ mu_mean_base [id G] <Vector(float64, shape=(2,))>
β ββ ExpandDims{axis=0} [id P] <Tensor3(float64, shape=(1, 47, 2))>
β β ββ Mul [id I] <Matrix(float64, shape=(47, 2))>
β β ββ Β·Β·Β·
β ββ ExpandDims{axes=[0, 1]} [id Q] <Tensor3(float64, shape=(1, 1, 2))>
β β ββ mu_mean_delta [id R] <Vector(float64, shape=(2,))>
β ββ DimShuffle{order=[x,1,0]} [id S] <Tensor3(float64, shape=(1, 47, ?))>
β ββ Dot22 [id T] <Matrix(float64, shape=(?, 47))> 'mu_i_delta_tilde'
β ββ Dot22 [id U] <Matrix(float64, shape=(?, ?))> 'L_S_mu'
β β ββ AllocDiag{offset=0, axis1=0, axis2=1} [id V] <Matrix(float64, shape=(?, ?))>
β β β ββ Exp [id W] <Vector(float64, shape=(2,))> 'mu_sd_delta'
β β β ββ mu_sd_delta_log__ [id X] <Vector(float64, shape=(2,))>
β β ββ Cholesky{lower=True, destructive=False, on_error='raise'} [id Y] <Matrix(float64, shape=(?, ?))>
β β ββ Add [id Z] <Matrix(float64, shape=(?, ?))>
β β ββ [[1. 0.]
[0. 1.]] [id BA] <Matrix(float64, shape=(2, 2))>
β β ββ AdvancedSetSubtensor [id BB] <Matrix(float64, shape=(?, ?))>
β β β ββ Alloc [id BC] <Matrix(float64, shape=(2, 2))>
β β β β ββ 0.0 [id BD] <Scalar(float64, shape=())>
β β β β ββ 2 [id BE] <Scalar(int8, shape=())>
β β β β ββ 2 [id BE] <Scalar(int8, shape=())>
β β β ββ Sub [id BF] <Vector(float64, shape=(1,))> 'L_R_mu'
β β β β ββ Sigmoid [id BG] <Vector(float64, shape=(1,))>
β β β β β ββ L_R_mu_interval__ [id BH] <Vector(float64, shape=(1,))>
β β β β ββ Sub [id BI] <Vector(float64, shape=(1,))>
β β β β ββ [1.] [id BJ] <Vector(float64, shape=(1,))>
β β β β ββ Sigmoid [id BG] <Vector(float64, shape=(1,))>
β β β β ββ Β·Β·Β·
β β β ββ [0] [id BK] <Vector(uint8, shape=(1,))>
β β β ββ [1] [id BL] <Vector(uint8, shape=(1,))>
β β ββ Transpose{axes=[1, 0]} [id BM] <Matrix(float64, shape=(?, ?))>
β β ββ AdvancedSetSubtensor [id BB] <Matrix(float64, shape=(?, ?))>
β β ββ Β·Β·Β·
β ββ mu_i_delta_pr [id BN] <Matrix(float64, shape=(2, 47))>
ββ cond_idx [id BO] <Vector(int32, shape=(?,))>
ββ subj_idx [id BP] <Vector(int32, shape=(?,))>
ββ time_idx [id BQ] <Vector(int32, shape=(?,))>
2: AdvancedSubtensor [id BR] <Vector(float64, shape=(?,))>
ββ Exp [id BS] <Tensor3(float64, shape=(2, 47, 2))> 'sigma'
β ββ Join [id BT] <Tensor3(float64, shape=(2, 47, 2))> 'sigma_stack'
β ββ 0 [id D] <Scalar(int8, shape=())>
β ββ Add [id BU] <Tensor3(float64, shape=(1, 47, 2))>
β β ββ ExpandDims{axes=[0, 1]} [id BV] <Tensor3(float64, shape=(1, 1, 2))>
β β β ββ sigma_mean_base [id BW] <Vector(float64, shape=(2,))>
β β ββ ExpandDims{axis=0} [id BX] <Tensor3(float64, shape=(1, 47, 2))>
β β ββ Mul [id BY] <Matrix(float64, shape=(47, 2))>
β β ββ Exp [id BZ] <Matrix(float64, shape=(1, 2))>
β β β ββ ExpandDims{axis=0} [id CA] <Matrix(float64, shape=(1, 2))>
β β β ββ sigma_sd_base_log__ [id CB] <Vector(float64, shape=(2,))>
β β ββ sigma_i_base_pr [id CC] <Matrix(float64, shape=(47, 2))>
β ββ Add [id CD] <Tensor3(float64, shape=(1, 47, 2))>
β ββ ExpandDims{axes=[0, 1]} [id CE] <Tensor3(float64, shape=(1, 1, 2))>
β β ββ sigma_mean_base [id BW] <Vector(float64, shape=(2,))>
β ββ ExpandDims{axis=0} [id CF] <Tensor3(float64, shape=(1, 47, 2))>
β β ββ Mul [id BY] <Matrix(float64, shape=(47, 2))>
β β ββ Β·Β·Β·
β ββ ExpandDims{axes=[0, 1]} [id CG] <Tensor3(float64, shape=(1, 1, 2))>
β β ββ sigma_mean_delta [id CH] <Vector(float64, shape=(2,))>
β ββ DimShuffle{order=[x,1,0]} [id CI] <Tensor3(float64, shape=(1, 47, ?))>
β ββ Dot22 [id CJ] <Matrix(float64, shape=(?, 47))> 'sigma_i_delta_tilde'
β ββ Dot22 [id CK] <Matrix(float64, shape=(?, ?))> 'L_S_sigma'
β β ββ AllocDiag{offset=0, axis1=0, axis2=1} [id CL] <Matrix(float64, shape=(?, ?))>
β β β ββ Exp [id CM] <Vector(float64, shape=(2,))> 'sigma_sd_delta'
β β β ββ sigma_sd_delta_log__ [id CN] <Vector(float64, shape=(2,))>
β β ββ Cholesky{lower=True, destructive=False, on_error='raise'} [id CO] <Matrix(float64, shape=(?, ?))>
β β ββ Add [id CP] <Matrix(float64, shape=(?, ?))>
β β ββ [[1. 0.]
[0. 1.]] [id BA] <Matrix(float64, shape=(2, 2))>
β β ββ AdvancedSetSubtensor [id CQ] <Matrix(float64, shape=(?, ?))>
β β β ββ Alloc [id BC] <Matrix(float64, shape=(2, 2))>
β β β β ββ Β·Β·Β·
β β β ββ Sub [id CR] <Vector(float64, shape=(1,))> 'L_R_sigma'
β β β β ββ Sigmoid [id CS] <Vector(float64, shape=(1,))>
β β β β β ββ L_R_sigma_interval__ [id CT] <Vector(float64, shape=(1,))>
β β β β ββ Sub [id CU] <Vector(float64, shape=(1,))>
β β β β ββ [1.] [id BJ] <Vector(float64, shape=(1,))>
β β β β ββ Sigmoid [id CS] <Vector(float64, shape=(1,))>
β β β β ββ Β·Β·Β·
β β β ββ [0] [id BK] <Vector(uint8, shape=(1,))>
β β β ββ [1] [id BL] <Vector(uint8, shape=(1,))>
β β ββ Transpose{axes=[1, 0]} [id CV] <Matrix(float64, shape=(?, ?))>
β β ββ AdvancedSetSubtensor [id CQ] <Matrix(float64, shape=(?, ?))>
β β ββ Β·Β·Β·
β ββ sigma_i_delta_pr [id CW] <Matrix(float64, shape=(2, 47))>
ββ cond_idx [id BO] <Vector(int32, shape=(?,))>
ββ subj_idx [id BP] <Vector(int32, shape=(?,))>
ββ time_idx [id BQ] <Vector(int32, shape=(?,))>
3: AdvancedSubtensor [id CX] <Vector(float64, shape=(?,))>
ββ Mul [id CY] <Matrix(float64, shape=(47, 2))> 'ndt_i'
β ββ Exp [id CZ] <Matrix(float64, shape=(47, 2))>
β β ββ Switch [id DA] <Matrix(float64, shape=(47, 2))>
β β ββ Lt [id DB] <Matrix(bool, shape=(47, 2))>
β β β ββ Add [id DC] <Matrix(float64, shape=(47, 2))>
β β β β ββ ExpandDims{axis=0} [id DD] <Matrix(float64, shape=(1, 2))>
β β β β β ββ ndt_mean [id DE] <Vector(float64, shape=(2,))>
β β β β ββ Mul [id DF] <Matrix(float64, shape=(47, 2))>
β β β β ββ ExpandDims{axis=0} [id DG] <Matrix(float64, shape=(1, 2))>
β β β β β ββ ndt_sigma [id DH] <Vector(float64, shape=(2,))>
β β β β ββ ndt_i_pr [id DI] <Matrix(float64, shape=(47, 2))>
β β β ββ [[-1.]] [id DJ] <Matrix(float32, shape=(1, 1))>
β β ββ Sub [id DK] <Matrix(float64, shape=(47, 2))>
β β β ββ Log [id DL] <Matrix(float64, shape=(47, 2))>
β β β β ββ Mul [id DM] <Matrix(float64, shape=(47, 2))>
β β β β ββ [[0.5]] [id DN] <Matrix(float64, shape=(1, 1))>
β β β β ββ Erfcx [id DO] <Matrix(float64, shape=(47, 2))>
β β β β ββ Mul [id DP] <Matrix(float64, shape=(47, 2))>
β β β β ββ [[-0.70710679]] [id DQ] <Matrix(float64, shape=(1, 1))>
β β β β ββ Add [id DC] <Matrix(float64, shape=(47, 2))>
β β β β ββ Β·Β·Β·
β β β ββ Mul [id DR] <Matrix(float64, shape=(47, 2))>
β β β ββ [[0.5]] [id DN] <Matrix(float64, shape=(1, 1))>
β β β ββ Sqr [id DS] <Matrix(float64, shape=(47, 2))>
β β β ββ Add [id DC] <Matrix(float64, shape=(47, 2))>
β β β ββ Β·Β·Β·
β β ββ Log1p [id DT] <Matrix(float64, shape=(47, 2))>
β β ββ Mul [id DU] <Matrix(float64, shape=(47, 2))>
β β ββ [[-0.5]] [id DV] <Matrix(float64, shape=(1, 1))>
β β ββ Erfc [id DW] <Matrix(float64, shape=(47, 2))>
β β ββ Mul [id DX] <Matrix(float64, shape=(47, 2))>
β β ββ [[0.70710679]] [id DY] <Matrix(float64, shape=(1, 1))>
β β ββ Add [id DC] <Matrix(float64, shape=(47, 2))>
β β ββ Β·Β·Β·
β ββ [[0.22698 ... .24872 ]] [id DZ] <Matrix(float64, shape=(47, 2))>
ββ subj_idx [id BP] <Vector(int32, shape=(?,))>
ββ time_idx [id BQ] <Vector(int32, shape=(?,))>
The parameters evaluate to:
0: [45120]
1: [0. 0. 0. ... 0. 0. 0.]
2: [1. 1. 1. ... 1. 1. 1.]
3: [0.11349 0.11349 0.11349 ... 0.12436 0.12436 0.12436]
Some of the observed values of variable likelihood are associated with a non-finite logp:
value = 0.013057221998227633 -> logp = -inf
value = 0.12245559233225234 -> logp = -inf
value = 0.12279559233225235 -> logp = -inf
value = 0.1324055923322523 -> logp = -inf
value = 0.13028559233225234 -> logp = -inf
value = 0.13515559233225233 -> logp = -inf
value = 0.09796559233225233 -> logp = -inf
value = 0.12287559233225231 -> logp = -inf
value = 0.10151559233225232 -> logp = -inf
value = 0.0845055923322523 -> logp = -inf
value = 0.10644559233225231 -> logp = -inf
value = 0.1179155923322523 -> logp = -inf
value = 0.1217555923322523 -> logp = -inf
value = 0.1133155923322523 -> logp = -inf
value = 0.10489559233225232 -> logp = -inf
value = 0.1310855923322523 -> logp = -inf
I see this post have the same error, but after browsing it I still have no cluehttps://discourse.pymc.io/t/some-of-the-observed-values-are-associated-with-a-non-finite-logp/12909