Help on function find_MAP in module pymc3.tuning.starting:
find_MAP(start=None, vars=None, method='L-BFGS-B', return_raw=False, include_transformed=True, progressbar=True, maxeval=5000, model=None, *args, **kwargs)
Finds the local maximum a posteriori point given a model.
Parameters
----------
start : `dict` of parameter values (Defaults to `model.test_point`)
vars : list
List of variables to optimize and set to optimum (Defaults to all continuous).
However, running it on the example in “Getting Started with PyMC3”:
basic_model = pm.Model()
with basic_model:
# Priors for unknown model parameters
alpha = pm.Normal('alpha', mu=0, sd=10)
beta = pm.Normal('beta', mu=0, sd=10, shape=2)
sigma = pm.HalfNormal('sigma', sd=1)
# Expected value of outcome
mu = alpha + beta[0]*X1 + beta[1]*X2
# Likelihood (sampling distribution) of observations
Y_obs = pm.Normal('Y_obs', mu=mu, sd=sigma, observed=Y)
The result does not include mu
even though it is a continuous random variable. Maybe this is so because is a deterministic variable, but the documentation does not refer to determinism. Should mu
be included, or should the documentation be improved?