After trainning, you can set the value using .set_value
:
In [3]: x = pm.Minibatch(np.random.randn(100,1000))
In [4]: x.eval()
Out[4]:
array([[-0.34829082, 0.45134496, -1.03519675, ..., -1.80109584,
0.57008269, -0.67598918],
[ 0.21424994, 1.34934134, -1.06525594, ..., -0.22126869,
-0.41794257, 1.98838051],
[ 3.36126028, -0.31755657, -0.82344513, ..., -0.96290175,
0.27808139, -0.8185643 ],
...,
[-0.02245564, -0.278961 , -0.73791364, ..., -0.45770139,
0.53545464, 1.73343965],
[-2.04156804, -0.72927505, 0.4760791 , ..., 0.99587714,
1.86240101, 0.92661746],
[ 1.9240239 , -0.75818123, -0.22159818, ..., -0.05474053,
0.40436321, -0.68701168]])
In [5]: x.eval()
Out[5]:
array([[-0.30117326, 0.34028205, 0.91282827, ..., 0.35780587,
-1.12898777, -0.82772432],
[-1.04008581, -2.16347976, -1.49979547, ..., -0.96488536,
-0.74512995, 1.99544914],
[-1.38044767, 0.70221734, 0.30531702, ..., 0.13047399,
-2.17276674, 1.09855923],
...,
[-0.59638083, -0.43653478, 0.93582342, ..., -0.69513752,
-1.87323037, -0.53201399],
[-0.95627072, 2.23213058, -0.67099718, ..., 1.0537604 ,
-0.97095504, -0.40000886],
[ 1.0656682 , -1.14207618, -1.41437202, ..., -0.45646884,
0.64780939, 0.0238533 ]])
where each evaluation is different. After seting the value, now each evaluation returns the same:
In [11]: x.set_value(np.zeros((100, 128)))
In [12]: x.eval()
Out[12]:
array([[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
...,
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.]])