Talk Abstract
When doing time-series modelling, you often end up in a situation where you want to make long-term predictions for multiple, related, time-series. In this talk, we’ll build an hierarchical version of Facebook’s Prophet package to do exactly that.
Matthijs Brouns | Twitter @MatthijsBrs |
GitHub mbrouns |
Personal website |
Talk
Matthijs Brouns
Matthijs is a data scientist, active in Amsterdam, The Netherlands. His current work involves training junior data scientists at Xccelerated.io. This means he divides his time between building new training materials and exercises, giving live trainings and acting as a sparring partner for the Xccelerators at his partner firms, as well as doing some consulting work on the side.
Matthijs spent a fair amount of time contributing to his open scientific computing ecosystem through various means. He maintains open source packages (scikit-lego, seers) as well as co-chairs the PyData Amsterdam conference and meetup and vice-chair the PyData Global conference.
In his spare time he likes to go mountain biking, bouldering, do some woodworking or go scuba diving.
This is a PyMCon 2020 talk
Learn more about PyMCon!
PyMCon is an asynchronous-first virtual conference for the Bayesian community.
We have posted all the talks here in Discourse on October 24th, one week before the live PyMCon session for everyone to see and discuss at their own pace.
If you are available on October 31st you can register for the live session here!, but if you are not don’t worry, all the talks are already available here on Discourse (keynotes will be posted after the conference) and you can network here on Discourse and on our Zulip.
We value the participation of each member of the PyMC community and want all attendees to have an enjoyable and fulfilling experience. Accordingly, all attendees are expected to show respect and courtesy to other attendees throughout the conference and at all conference events. Everyone taking part in PyMCon activities must abide by the PyMCon Code of Conduct. You can report any incident through this from.
If you want to support PyMCon and the PyMC community but you can’t attend the live session, consider donating to PyMC
Do you have suggestions to improve PyMCon? We have an anonymous suggestion box waiting for you
Have you enjoyed PyMCon? Please fill our PyMCon attendee survey. It is open to both async PyMCon attendees and people taking part in the live session.